首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent laboratory and field studies suggest that Mn(lll) forms persistent aqueous complexes with high-affinity ligands. Aqueous Mn(lll) species thus may play a significant but largely unexplored role in biogeochemical processes. One formation mechanism for these species is the dissolution of Mn(lll)-bearing minerals. To investigate this mechanism, we measured the steady-state dissolution rates of manganite (gamma-MnOOH) in the presence of desferrioxamine B (DFOB), a common trihydroxamate siderophore. We find that DFOB dissolves manganite by both reductive and nonreductive reaction pathways. For pH > 6.5, a nonreductive ligand-promoted reaction is the dominant dissolution pathway, with a steady-state dissolution rate proportional to the surface concentration of DFOB. In the absence of reductants, the aqueous Mn(lIl)HDFOB+ complex resulting from dissolution is stable for at least several weeks at circumneutral to alkaline pH and at 25 degrees C. For pH < 6.5, Mn2+ is the dominant aqueous species resulting from manganite dissolution, implicating a reductive dissolution pathway. These results have important implications for the biogeochemical cycling of both manganese and siderophores--as well as Fe(lll)--in natural waters and soils.  相似文献   

2.
Uptake of plutonium and uranium mediated by the siderophore desferrioxamine-B (DFOB) has been studied for the common soil aerobe Microbacterium flavescens(JG-9). M. flavescens does not bind or take up nitrilotriacetic acid (NTA) complexes of U(VI), Fe(III), or Pu(IV) or U(VI)-DFOB but does take up Fe(III)-DFOB and Pu(IV)-DFOB. Pu(IV)-DFOB and Fe(III)-DFOB accumulations are similar: only living and metabolically active bacteria take up these metal-siderophore complexes. The Fe(III)-DFOB and Pu(IV)-DFOB complexes mutually inhibit uptake of the other, indicating that they compete for shared binding sites or uptake proteins. However, Pu uptake is much slower than Fe uptake, and cumulative Pu uptake is less than Fe, 1.0 nmol of Fe vs 0.25 nmol of Pu per mg of dry weight bacteria. The Pu(IV)-DFOB interactions with M. flavescens suggest that Pu-siderophore complexes could generally be recognized by Fe-siderophore uptake systems of many bacteria, fungi, or plants, thereby affecting Pu environmental mobility and distribution. The results also suggest that the siderophore complexes of tetravalent metals can be recognized by Fe-siderophore uptake proteins.  相似文献   

3.
Antimony is used in large quantities in a variety of products, though it has been declared as a pollutant of priority interest by the Environmental Protection Agency of the United States (USEPA). Oxidation processes critically affect the mobility of antimony in the environment since Sb(V) has a greater solubility than Sb(lll). In this study, the cooxidation reactions of Sb(lIl) with Fe(ll) and both O2 and H2O2 were investigated and compared to those of As(III). With increasing pH, the oxidation rate coefficients of Sb(lll) in the presence of Fe(ll) and O2 increased and followed a similar pH trend as the Fe(ll) oxidation by O2. Half-lives of Sb(lll) were 35 and 1.4 h at pH 5.0 and pH 6.2, respectively. The co-oxidation with Fe(ll) and H2O2 is about 7000 and 20 times faster than with Fe(ll) and O2 at pH 3 and pH 7, respectively. For both systems, *OH radicals appear to be the predominant oxidant below approximately pH 4, while at more neutral pH values, other unknown intermediates become important. The oxidation of As(lll) follows a similar pH trend as the Sb(lll) oxidation; however, As(lll) oxidation was roughly 10 times slower and only partly oxidized in most of the experiments. This study shows that the Fe(ll)-mediated oxidation of Sb(Ill) can be an important oxidation pathway at neutral pH values.  相似文献   

4.
Ion-exchange experiments were performed to evaluate the formation of the uranium-citrate and uranium-iron-citrate complexes over a wide concentration range; i.e., environmentally relevant concentrations (e.g., 10(-6) M in metal and ligand) and concentrations useful for spectroscopic investigations (e.g., 10(-4) M in metal and ligand). The stability of the well-known uranium-citrate complex was determined to validate the computational and experimental methods applied to the more complex system. Values of the conditional stability constants for these species were obtained using a chemical equilibrium model in FITEQL. At a pH of 4.0, the stability constant for uranium-citrate complex (log beta1,1) was determined to be 8.71+/-0.6 at I = 0. Analysis of the results of ion-exchange experiments for the U-Fe-citric acid system indicates the formation of the 1:1:1 and 1:1:2 ternary species with stability constants (log beta) of 17.10+/-0.41 and 20.47+/-0.31, respectively, at I= 0.  相似文献   

5.
Organic matter-metal complexes in soil solution and aquatic systems are involved in important environmental and ecological processes such as plant nutrient availability and the solubilization and transport of metals. Our work presented here extends the use of fluorescence spectrometry for determining conditional stability constants for such complexes. We combine the use of excitation-emission matrix (EEM) fluorescence spectrometry and parallel factor analysis (PARAFAC) to determine the stability constants of the chemically meaningful components modeled by PARAFAC. Water-soluble organic matter (WSOM) from O-horizon soils of deciduous and coniferous forest stands were extracted and titrated at pH = 4.7 with iron(lll) (Fe) and aluminum (Al) which are important metals in acid soil systems. The EEM spectra were then recorded and PARAFAC analysis showed that the WSOM contained three humic-substance-like components. Fe titration led to fluorescence quenching of the three components, while Al titration enhanced fluorescence for two components and quenched one of the components. The average Ryan-Weber stability constants at pH 4.7 ranged from log K of 4.28 to 4.91 for Fe and 4.84 to 5.96 for Al. The conditional stability constants were similar for Fe binding for deciduous and coniferous stand-derived WSOM, while they were stronger for Al binding with coniferous stand-derived WSOM. This difference in binding strengths for Al may affect the chemical behavior of Al in soil and aquatic systems. Determining the individual binding parameters of organic matter components with metals represents a significant advance over current approaches that utilize fluorescence quenching at a single excitation-emission wavelength pair to characterize organic matter-metal interactions.  相似文献   

6.
The sonochemical degradation rate of Methylene Blue (MB) is markedly increased in the presence of Fe(Ill), a rather inexpensive reagent for the application of sonochemistry to wastewater treatment. The effect of Fe(lll) is due to a sonochemically induced Fenton reaction, where both reactants (Fe(ll) and H2O2) are sonochemically synthesized. Hydroperoxide/superoxide, generated upon sonochemical processes in aerated solution, is a key species involved in both Fe(lll) reduction to Fe(ll) and in the production of H2O2. The Fenton reaction between Fe(ll) and H2O2 then produces hydroxyl radicals, enhancing the degradation of MB. A further enhancement of the degradation of the substrate in the presence of Fe(lll) takes place upon addition of H2O2, which is likely to favor the Fenton process. Interestingly, H2O2 alone, in the absence of Fe(lll), has a very limited effect on the sonochemical degradation rate.  相似文献   

7.
The speciation of mercury(II) in the aquatic environment is greatly affected by the presence of ligands capable of forming extremely strong complexes with Hg(II). In this study, a novel competitive ligand exchange (CLE) technique was used to characterize Hg(II)-complexing ligands in samples collected from three municipal wastewater treatment plants, a eutrophic lake, a creek located downstream of an abandoned mercury mine, and a model water containing dissolved Suwannee River humic acid. These samples contained 3.3-15.9 mg/L dissolved organic carbon and were amended with 1.0-1.7 nM Hg(II) for CLE analysis. Results indicated that all samples contained labile Hg(II)-complexing ligands with conditional stability constants similar to those of reduced sulfur-containing ligands. Two wastewater effluent samples also contained approximately 0.5 nM of ligands that formed extremely strong Hg(II) complexes that did not dissociate in the presence of competing ligands. The conditional stability constant of these extremely strong or nonlabile complexes (i.e., (c)K(HgL)) were estimated to be greater than 10(30), for the reaction Hg(2+) + L' = HgL. The third wastewater sample and the eutrophic lake sample contained lower concentrations, 0.07-0.09 nM, of nonlabile Hg(II)-complexing ligands. The results suggested that these extremely strong Hg(ll)-complexing ligands should account for most of the dissolved Hg(II) species in municipal wastewater effluent and may dominate Hg(II) speciation in effluent-receiving waters.  相似文献   

8.
9.
Stability of lead(II) complexes of alginate oligomers   总被引:1,自引:0,他引:1  
The current work reports on the Pb(ll) complexes formed with oligomeric uronic acids (carboxylated saccharide residues) found polymerized in the cell walls and envelopes of algae and bacteria alike. The application of partial acid hydrolysis, size-exclusion chromatography (SEC), 1H NMR, and scanned deposition stripping chronopotentiometry (SSCP) has permitted the determination of stability constants for Pb(II) with both mannuronic (M) and guluronic (G) acid oligomers ranging from the dimer to the pentamer. The determined logarithm of the stability constants range between 4.11 +/- 0.05 and 5.00 +/- 0.04 mol(-1) x dm3 for the eight oligomers studied (pH 6; I = 0.1 mol x dm(-3)). Additional experiments under the same experimental conditions employing galacturonic and glucuronic acid oligomers yielded slightly lower values (2.19 +/- 0.10 to 4.02 +/- 0.07 mol(-1) x dm3) that were expected based on their structure, whereby the monomers which were not included in the alginate oligomer series (unavailable by SEC), yielded the lowest stability constants. This work demonstrates the applicability of the SSCP technique for the determination of stability constants for metal-ligand complexes in which the ligands display relatively low molecular mass. Previous studies on heavy metal interaction with the matrix polysaccharide alginate have largely been restricted to the whole polymer that forms a gel upon binding to network bridging ions such as calcium. The results will be discussed in this context with the emphasis being placed on the relevance of these findings to processes occurring at the biointerface and results from the relevant literature.  相似文献   

10.
《Food chemistry》1999,64(3):397-401
Stability constant determinations of the new artificial sweetener alitame (l-α-aspartyl-N-(2,2,4,4-tetramethyl-3-thietanyl)-d-alaninamide), an HL type ligand (L=the deprotonated form of the ligand), was carried out with H(I) and Cu(II) under physiological conditions (I=0.15(NaCl) in water, 37°C) using potentiometric titration. The molar concentration stability constants of H(I) and Cu(II) complexes with alitame, together with a distribution diagram of the Cu(II)-alitame complex species as a function of pH, are obtained. Cu(II) is able to form binary complex species (CuL+, CuL2) with alitame in solution. Those species are further deprotonated to form the corresponding CuLH−1, CuLH−2 and CuL2H−1 species. The neutral Cu(II)-alitame complex, CuL2, is the major species between pH=6.5 and 7.5 followed by CuLH−1. A comparison with the less-stable artificial sweetener, aspartame (N-l-α-aspartyl-l-phenylalanine 1-methyl ester), is considered. Preliminary stability tests for alitame and Cu(II)-alitame solutions, using pH and stability constant methods, are reported.  相似文献   

11.
Competitive photocatalytic oxidation (PCO) of mixtures of Cu(II)-EDTA and Cd(II)-EDTA was studied with variation of molar ratio of these two complexes (1 x 10(-4):0, 8 x 10(-5): 2 x 10(-5), 5 x 10-5:5 x 10(-5), 2 x 10-5:8 x 10(-5), 0:1 x 10(-4) M) and in the pH range of 4-8. PCO rates for each compound can be described using a combined aqueous + adsorbed pathway: -dC/dt = k1Caq(1+ k2Caq)+ kadsCads. This expression is valid under both noncompetitive and competitive conditions. Differences in rates under competition result from differences in the partitioning of the two species between the TiO2 surface and the aqueous phase. Total initial complex degradation rates (rTT), obtained by summation of the total destruction rates for Cu(II)-EDTA and Cd(II)-EDTA, were relatively constant at pH 4 and 5 for all ratios. At these pH values, contribution of adsorbed pathways to rTT was important, and rates were similar to those of the aqueous phase pathways. From pH 6 to 8, the degree of adsorption, and thus the adsorbed pathway rate, diminished. Through the adsorbed pathway, no difference in rate constants was found between Cu(II)-EDTA and Cd(II)-EDTA; Cd(II)-EDTA is somewhat more reactive through the aqueous phase pathway.  相似文献   

12.
The ability to quantify the chemical and physical forms of transition metals in atmospheric particulate matter (PM) is essential in determining potential human health and ecological effects. A method for the speciation of iron in atmospheric PM has been adapted which involves extraction in a well-defined solution followed by oxidation state specific detection. The method was applied to a suite of environmental aerosols. Ambient atmospheric aerosols in an urban area of St. Louis (the St. Louis-Midwest Supersite) were collected on Teflon substrates and were leached in one of four different solutions: (1) >18.0 Momega water; (2) 140 microM NaCl solution; (3) pH = 7.4 NaHCO3 solution; and (4) pH = 4.3 acetate buffering system. Fe(ll) was determined directly using the Ferrozine method as adapted to liquid waveguide spectrophotometry using a 1 m path-length cell. Fe(lll) was determined similarly after reduction to Fe(ll). It was found that, at low ionic strength, pH exerted a major influence on Fe(ll) solubility with the greatest Fe(ll) concentration consistently found in the pH = 4.3 acetate buffer. Soluble Fe(lll) (as defined by a 0.2 microm filter) varied little with extractant, which implies that most of the Fe(lll) detected was colloidal. To characterize well-defined materials for future reference, NIST standard reference materials were also analyzed for soluble Fe(ll) and Fe(lll). For all SRMs tested, a maximum of 2.4% of the total iron (Urban Dust 1649a) was soluble in pH = 4.3 acetate buffer. For calibration curves covering the ranges of 0.5-20 microg/L Fe(ll), excellent linearity was observed in all leaching solutions with R2 values of > 0.999. Co-located filters were used to test the effect of storage time on iron oxidation state in the ambient particles as a function of time. On two samples, an average Fe(ll) decay rate of 0.89 and 0.57 ng Fe(ll) g(-1) PM day(-1) was determined from the slope of the regression, however this decrease was determined not to be significant over 3 months (95% confidence). As an application of this method to mobile source emissions, size-resolved PM10 samples were collected at the inlet and outlet of the Caldecott Motor Vehicle Tunnel in northern California. These samples indicate that the coarse fraction (PM10-PM2.5) contains almost 50% of the total soluble Fe(ll) in the aerosol.  相似文献   

13.
To understand the key processes affecting 99Tc mobility in the subsurface and help with the remediation of contaminated sites, the binding constants of several humic substances (humic and fulvic acids) with Tc(IV) were determined, using a solvent extraction technique. The novelty of this paper lies in the determination of the binding constants of the complexes formed with the individual species TcO(OH)+ and TcO(OH)2(0). Binding constants were found to be 6.8 and between 3.9 and 4.3, for logβ1,-1,1 and logβ1,-2,1, respectively; these values were little modified by a change of ionic strength, in most cases, between 0.1 and 1.0 M, nor were they by the nature and origin of the humic substances. Modeling calculations based on these show TcO(OH)-HA to be the predominant complex in a system containing 20 ppm HA and in the 4-6 pH range, whereas TcO(OH)2(0) and TcO(OH)2-HA are the major species, in the pH 6-8 range.  相似文献   

14.
Dialysis experiments with arsenate and three different NOM samples amended with Fe(lll) showed evidence confirming the formation of aquatic arsenate-Fe(Ill)-NOM associations. A linear relationship was observed between the amount of complexed arsenate and the Fe(lll) content of the NOM. The dialysis results were consistent with complex formation through ferric iron cations acting as bridges between the negatively charged arsenate and NOM functional groups and/or a more colloidal association, in which the arsenate is bound by suspended Fe(lll)-NOM colloids. Sequential filtration experiments confirmed that a significant proportion of the iron present at all Fe/C ratios used in the dialysis experiments was colloidal in nature. These colloids may include larger NOM species that are coagulated by the presence of chelated Fe(lll) and/or NOM-stabilized ferric (oxy)hydroxide colloids, and thus, the solution-phase arsenate-Fe(Ill)-NOM associations are at least partially colloidal in nature.  相似文献   

15.
Land application of wastes generated from concentrated animal feeding operations may result in accumulation of tetracyclines (TCs) and metals in agricultural soils. Adsorption of TCs and metals on soil minerals strongly affects their mobility. This study was conducted to evaluate the interaction between tetracycline (TC) and Cu(ll) with regard to their adsorption and cosorption on montmorillonite as affected by solution pH. When solution pH was below 6.5, the presence of TC increased Cu(ll) adsorption on montmorillonite, which could be due to increasing Cu(II) adsorption via the TC bridge, or due to the stronger affinity of TC-Cu(II) complex to the mineral than Cu2+ ion itself. Zeta potential of the montmorillonite significantly decreased after the adsorption of TC, suggesting a strong interaction between TC and montmorillonite. Addition of Cu(ll) ions increased TC adsorption on the mineral in a wide range of pH. The experimental data were well fit with the weighted sum model. The complexes of TC and Cu(II) (CuH2L(2+), CuHL+, and CuL) had higher sorption coefficients (K(d)) than that of the corresponding TC species (H3L+, H2L, and HL-). Increasing adsorption of TC and Cu(II) on montmorillonite as they coexist in the normal pH environment may thus reduce their mobility.  相似文献   

16.
This study describes a short-term (12 h) evaluation of iron (Fe) bioavailability to an Fe-dependent cyanobacterial bioreporter derived from Synechococcus PCC 7942. Several synthetic ligands with variable conditional stability constants for Fe(lll) (K* of 10(19.8) to 10(30.9)), in addition to several defined natural Fe-binding ligands and a fulvic acid of aquatic origin (Suwannee River), were used to elucidate the forms of Fe that are discerned by this phytoplanktonic microbe: Fe-HEBD (log conditional stability constant, K*, = 28.1, HEBD = N,N'-di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid monohydrochloride hydrate), Fe-HDFB (K* = 30.9, DFB = desferroxamine B), Fe-ferrichrome (K* = 23.2), Fe-DTPA (K* = 21.1, DTPA = diethylenetrinitrilopentaacetic acid), Fe-(8HQS)2 (K* = 20.4, 8HQS = 8-hydroxyquinoline-5-sulfonic acid), Fe-CDTA (K* = 19.8, CDTA = trans-1,2-cyclohexylenedinitrilotetraacetic acid), and Fe-EDTA (K* = 19.2). Iron bioavailability sensed by the bioreporter was related to diffusion limitation and activity of high-affinity transporters rather than by siderophore secretion. Iron complexed with a K* < 23.2 contributes to the bioavailable pool; bioavailability could be explained by disjunctive ligand exchange considerations and fully, partially, and nonbioavailable complexes could be distinguished according to their conditional stability constant. The use of Fe-bioreporters provides a relevant measurement of bioavailability to an important group of primary producers in freshwaters (cyanobacteria) and is thus a promising technique for understanding Fe cycling in aquatic systems.  相似文献   

17.
Complexation of iron(ll) by catechol and thiol ligands leads to the formation of aqueous species that are capable of reducing substituted nitroaromatic compounds (NACs) to the corresponding anilines. No reactions of NACs are observed in FelI-only or ligand-only solutions. In solutions containing FeII and tiron, a model catechol, rates of NAC reduction are heavily dependent on pH, ligand concentration, and ionic strength. Observed pseudo-first-order rate constants (k(obs)) for 4-chloronitrobenzene reduction vary by more than 6 orders of magnitude, and the variability is well described by the expression k(obs) = k(FeL2)(6-) [FeL2(6-)], where [FeL2(6-)] is the concentration of the 1:2 FeII-tiron complex and kFeL2(6-) is the bimolecular rate constant for 4-chloronitrobenzene reaction with this species. The high reactivity of this FeII species is attributed to the low standard one-electron reduction potential of the corresponding FeIII/FeII redox couple (EH0 = -0.509 V vs NHE). The relative reactivity of different NACs can be described by a linear free-energy relationship (LFER) with the one-electron reduction potentials of the NACs, EH1'(ArNO2). The experimentally derived slope of the LFER indicates that electron transfer is rate determining. These findings suggest that FeII-organic complexes may play an important, previously unrecognized, role in the reductive transformation of persistent organic contaminants.  相似文献   

18.
利用离子交换平衡法研究了茶褐素与金属离子的络合作用,探讨了pH和温度对络合稳定常数的影响。结果表明,茶褐素与Ca2+和Zn2+的络合稳定常数受pH影响,在pH=7.0时均最高;而升高温度不利于络合反应的进行;茶褐素与金属离子发生络合后其酸基含量减少,说明茶褐素中起主要络合作用的羧基和酚羟基等主要酸性基团与金属发生了络合作用。茶褐素与金属的络合作用为进一步研究茶褐素对人体的作用及其保健品的开发提供理论依据。  相似文献   

19.
Sulfonamide antimicrobials are used in both human therapy and animal husbandry. Sulfonamides are not readily biodegradable and have been detected in surface water and in secondary wastewater effluents. The chemical oxidation of sulfonamides by an environmentally friendly oxidant, ferrate(VI) (Fe(VI)O4(2-), Fe(VI)), was conducted. The sulfonamides used in the oxidation studies were sulfisoxazole, sulfamethazine, sulfamethizole, sulfadimethoxine, and sulfamethoxazole. Kinetics of the reactions were determined as a function of pH (7.0-9.7) and temperature (15-45 degrees C) by a stopped-flow technique. The rate law for the oxidation of sulfonamides by Fe(VI) is first-order with respect to each reactant. The observed second-order rate constants decreased nonlinearly with an increase in pH and are possibly related to the protonation of Fe(VI) (HFeO4- <==> H+ + FeO4(2-); pK(a,HFeO4) = 7.23) and sulfonamides (SH <==> H+ + S-; pK(a,SH) = 5.0-7.4). The activation parameters of the reactions vary with pH due to temperature dependence on the protonation of Fe(VI) and sulfonamides. These results were used to obtain enthalpy of dissociation of sulfonamides. Stoichiometry and products of sulfamethoxazole (SMX) reactions with Fe(VI) were studied in detail using various analytical techniques to evaluate the effect of the oxidation process on the fate of sulfonamides in water. At a stoichiometric ratio of 4:1 (Fe(VI): SMX), complete removal of SMX was achieved. Analyses of oxidation products of the reaction as well as kinetic measurements of substructural models of SMX suggest that the attack of Fe(VI) occurs at the isoxazole moiety as well as at the aniline moiety with minimal preference. The results of the studies reported suggest that Fe(VI) has the potential to serve as a chemical oxidant for removing sulfonamides and converting them to relatively less toxic byproducts in water.  相似文献   

20.
Thioarsenates in sulfidic waters   总被引:2,自引:0,他引:2  
It has long been recognized that the formation of soluble arsenic sulfur complexes plays a key role for the mobility and toxicity of arsenic in sulfate-reducing environments. Knowledge of the exact arsenic species is essential to understand the behavior of arsenic in sulfidic aquifers and to develop remediation strategies. In the past, monomeric and trimeric thioarsenites were assumed to be the existing species in sulfidic systems. In this study, thioarsenates were identified by IC-ICP/MS in arsenite- and sulfide-containing solutions as well as in a reduced groundwater from a contaminated site. The unexpected finding of an oxidation of As(lll) to As(V) in thioarsenates in strongly reducing systems can be explained by the high affinity between As(Ill) and sulfur. In sulfide-containing solutions without oxidant, As(lll) therefore undergoes disproportionation to thioarsenates (As(V)) and elemental arsenic. It has previously been supposed that mobility as well as toxicity of arsenic increases if the redox state decreases. For sulfidic waters, the opposite is probably the case. Thus, the formation of thioarsenates could be used in connection with remediation strategies. Thioarsenates are highly sensitive to oxygen and pH. This is important for analytical procedures. A loss of soluble arsenic as well as a conversion to arsenite and arsenate may occur if water samples containing thioarsenates are analyzed with conventional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号