共查询到20条相似文献,搜索用时 62 毫秒
1.
该文提出了一种基于K近邻加权的混合C均值聚类算法。首先该文利用模糊C均值聚类和可能性C均值聚类的优点,设计出一种混合C均值聚类算法。然后以K近邻规则为基础,计算出样本集的加权矩阵,最后得到基于K近邻加权的混合C均值聚类算法。由于该算法考虑到了不同样本点对分类的影响程度,对较复杂的样本集合,能明显提高分类的正确性和鲁棒性。 相似文献
2.
一种基于聚类的彩色图像分色算法 总被引:3,自引:0,他引:3
图像分色在纺织和印刷等行业中有着广泛而重要的应用,其目的是用尽量少的颜色采描述一幅彩色图像,使得到的分色图像与原图像尽可能的接近。提出一种基于单遍聚类和K-均值聚类相结合的自适应图像分色算法。该算法首先对原图像颜色进行统计学习,由单遍聚类产生初始调色板,然后根据该调色板对原图像的像素点进行K-均值聚类,产生分色图像。实验结果表明,与单纯K-均值聚类算法相比,该算法能在提高分色图像质量的同时进一步减少颜色数。 相似文献
3.
可能性C均值聚类算法(PCM)中模糊加权指标m要求大于1,通过对PCM算法的分析讨论,将PCM算法中模糊加权指标m设置为多个独立变量,且将其取值范围进行了扩展,称之为广义可能性C均值聚类(GPCM)。GPCM从理论上分析了加权指标m的扩展取值范围,并利用粒子群算法(PSO)对样本模糊隶属度进行估计。GPCM算法突破了PCM算法对参数m的约束。仿真实验验证了所提算法的有效性。 相似文献
4.
基于模糊C均值(FCM)聚类算法,并利用遗传算法全局随机搜索的特点,提出了一种图像分割的改进遗传算法。该算法首先采用一种初值化算法确定合适的遗传算法的初始搜索范围,然后对遗传算法中的编码方式、交叉算子、变异算子等参数进行了一些适当改进,进而给出了该算法的理论推导和算法的具体实现步骤。该算法除了解决模糊C均值聚类算法在医学图像分割中容易陷入局部最优解的问题,而且采用的初值化算法比标准的遗传模糊C均值聚类算法能确定更合适的遗传算法的初始搜索范围,从而加速了遗传算法的收敛过程。实验表明,该方法相对于标准的遗传模糊C均值聚类算法,效果要好得多。 相似文献
5.
把自适应的策略与传统的模糊C均值聚类算法结合起来,形成新的模糊聚类算法。在不影响收敛速度的情况下,它能够很好解决局部最优以及对初始值敏感的问题。以UCI机器学习数据库中的两组数据集为研究对象,实验结果表明,它的精确度与自适应免疫聚类算法相当,能够得到准确的簇的数目,并且它的收敛速度更快,这对于如今网络数据的高速变化来说,该方法显得更为重要。 相似文献
6.
针对高分辨率天文图像中的星点聚类研究中存在的 2 个问题:①天文图像的分辨率 较高,且图像处理速度较慢;②选取何种聚类算法对天文图像中的星点进行聚类分析效果较好。 在研究中,问题 1 采用图像分块的方法提高图像的处理速度;问题 2 提出了一种改进的 K 均值聚 类算法,以解决传统的 K 均值聚类算法的聚类结果易受到 k 值和初始聚类中心随机选择影响的问 题。该算法首先在用 K 均值聚类算法对数据初步聚类的基础上确定合适的 k 值,其次用层次聚类 对数据聚类确定初始聚类中心,最后在此基础上再采用 K 均值聚类算法进行聚类。通过 MATLAB 仿真实验的结果表明,该算法的聚类结果与效率优于其他聚类算法。 相似文献
7.
8.
传统的核聚类仅考虑了类内元素的关系而忽略了类间的关系,对边界模糊或边界存在噪声点的数据集进行聚类分析时,会造成边界点的误分问题。为解决上述问题,在核模糊C均值(KFCM)聚类算法的基础上提出了一种基于改进核模糊C均值类间极大化聚类(MKFCM)算法。该算法考虑了类内元素和类间元素的联系,引入了高维特征空间的类间极大惩罚项和调控因子,拉大类中心间的距离,使得边界处的样本得到了较好的划分。在各模拟数据集的实验中,该算法在类中心的偏移距离相对其他算法均有明显降低。在人造高斯数据集的实验中,该算法的精度(ACC)、归一化互信息(NMI)、芮氏指标(RI)指标分别提升至0.9132,0.7575,0.9138。 相似文献
9.
基于空间信息的可能性模糊C均值聚类遥感图像分割 总被引:1,自引:0,他引:1
可能性模糊C均值(PFCM)聚类算法作为模糊C均值(FCM)聚类算法的一种改进算法,能在一定程度上克服FCM算法对噪声的敏感性;但由于PFCM没有考虑像元间的空间信息,对含有较大噪声的图像分割效果依然不理想。为此,提出一种新的基于空间信息的PFCM算法(SPFCM),克服了PFCM算法对含有较大噪声的图像分割效果不佳的缺点。通过对人工图像和IKONOS遥感图像进行分析,结果表明,SPFCM算法无论是在视觉上还是在分割正确率上都优于传统的FCM算法、PFCM算法及两种加入空间信息的FCM算法;对于含有高斯噪声和盐椒噪声的图像,平均分割正确率高达99.71%,是一种去噪效果较好的图像分割算法。 相似文献
10.
模糊C均值(FCM)聚类算法无法识别非凸数据,算法中基于欧式距离的相似性度量只考虑数据点之间的局部一致性特征而忽略了全局一致性特征。提出一种利用密度敏感距离度量创建相似度矩阵的FCM算法。通过近邻传播算法获取粗类数作为最佳聚类数的搜索范围上限,以解决FCM算法聚类数目需要人为预先设定和随机选定初始聚类中心造成聚类结果不稳定的问题。在此基础上,改进最大最小距离算法,得到具有代表性的样本点作为初始聚类中心,并结合轮廓系数自动确定最佳聚类数。基于UCI数据集和人工数据集的实验结果表明,相比经典FCM、K-means和CFSFDP算法,该算法不仅具有识别复杂非凸数据的能力,而且能够在保证聚类性能和稳定性的前提下加快收敛速度。 相似文献
11.
基于特征加权的自适应FCM彩色图像分割算法 总被引:1,自引:0,他引:1
图像分割是模式识别、图像理解、计算机视觉等领域的重要研究内容.基于模糊C均值聚类(FCM)的图像分割是应用较为广泛的方法之一,但其存在需预先给出初始聚类数目,且要考虑各个特征对分类的不同影响等问题.通过引入ReliefF技术进行特征加权,结合聚类有效性指数自适应确定初始聚类数目、根据Laws纹理测度提取图像特征等措施,提出了一种新的FCM彩色图像分割算法.实验结果表明,该算法可以有效地提高图像分割效果,分割结果优于现有FCM图像分割方案. 相似文献
12.
有效的图像分割是进一步进行图像高层次理解和应用的基础。遗传算法是一种鲁棒性很强的优化算法。该文利用遗传算法对图像进行聚类分析,提出了两种新颖的图像分割算法。染色体码长固定时,按用户指定的特征向量在特征空间内进行聚类分割;染色体码长可变时,可同时对图像应分类数进行动态优化。通过实验对它们各自的优缺点进行了分析,并与其它分割算法的性能进行了比较。利用VisualC++6.0实现了文中的算法,并设计了一具体的小型应用系统。 相似文献
13.
14.
仿射相机模型下,运动分割问题转化为子空间分离问题,处理这类问题的算法大多是离线算法,当假设不满足时性能很不理想.针对上述问题,提出一种在线运动分割算法,通过动态标签传输和簇分割进行运动分割.首先,根据固定数量的帧进行初始化,接着,通过在线策略更新轨迹相似性,最后,利用动态标签传输技术在帧间传输信息,对簇进行评估和归一化切分成本估计,实现动态的簇分割.基于基准数据集的仿真实验结果表明,算法的运行结果与离线算法相当. 相似文献
15.
蔡志华 《计算机与数字工程》2013,41(8)
为克服K均值聚类算法大幅图像分割时运算代价太大、耗时长等问题,论文在K均值聚类算法的基础上,结合块矩阵、查找表技术提出了一种快速彩色图像分割方法.对大量彩色图像的分割实验表明,新算法比传统的K均值聚类算法快了一个数量级,并且该算法产生了较好的分割结果. 相似文献
16.
针对传统K均值聚类算法在彩色图像分割中受K值和初始聚类中心影响较大等问题。在基于图像子块划分的基础上给出了一种k值和初始聚类中心确定方法,并用区域生长算法对聚类后的子块进行块后处理,利用提出的算法对多幅自然图像进行了分割实验,并与相似的分割方法进行了比较实验,给出了详细的实验结果与分析。实验表明该方法分割速度快,效果好,具有较高的实用价值。 相似文献
17.
提出一种基于图像区域特征估计聚类数的快速FCM图像分割算法。在算法的预测分析阶段, 利用由共生矩阵统计值所构成的特征矢量描述图像中区域特征并结合多个聚类有效性判定函数实现准确的聚类数估计和隶属度矩阵值的初始化。在主聚类阶段,采用Gabor滤波器提取的颜色纹理隐式混合特征进行聚类,不但能获得更加合理的区域分割质量,同时也具有较好的抗噪声能力。实验表明改进算法有效克服基于像素点级特征的FCM图像分割算法在聚类数估计和隶属度矩阵初始化方面的不足,加快FCM主聚类阶段的迭代速度,执行效率更高。 相似文献
18.
电路板图像分割的K均值聚类算法研究 总被引:2,自引:0,他引:2
对电路板的图像进行分割,可以提取电路板中的目标物,以对电路板进行检测。文章使用K均值聚类算法完成对电路板图像的分割,针对传统的K均值聚类算法的不足,提出了使用直方图波形的有效波峰个数来确定K值的大小,并通过使用一种比传统的绝对误差的表示更简洁的表达式,达到了快速分割的目的。对一些电路板图像分割的实验结果表明,文章的方法能够根据目标物的数目有效的确定K值的大小,且比传统的K均值算法减少了运算量及计算时间。 相似文献
19.
模糊C均值聚类用于彩色图像分割具有简单直观,易于实现的特点,但存在聚类性能受中心点初始化影响且计算量大等问题,为此,提出一种自适应模糊C均值分割方法.算法根据人类的视觉特性,参照NBS距离与人类视觉对颜色差别的定量关系,结合具体图像的色彩分布,自动确定初始聚类中心及聚类数目,继而进行模糊C均值聚类.实验表明,该方法无需人为的干预,分割速度快,分割效果跟人的主观视觉感知保持了良好的一致性. 相似文献
20.