首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes control of the coating layer thickness and the crystallite size of the core–shell hybrid particles by controlling the process parameter. The core–shell hybrid particles were prepared using liquid phase deposition (LPD). We confirmed that the homogeneous coating was attained from the result of the zeta potential and the transmission electron microscope (TEM) observation. Furthermore, the coating layer microstructure was estimated using Brunauer–Emmett–Teller (BET) method. The obtained coating layer of titania was estimated using the band gap energy. Results indicate that the blue shift of the band gap energy signifies that the physical property of the hybrid particles was controlled by the coating layer thickness and the crystallite size, which are determined by the processing parameters.  相似文献   

2.
Silver nanoclusters coated by SiO2 were synthesized by a reverse micelle technique to obtain a core–shell microstructure with tunable particle size less than 50 nm. The refractive indices of the Ag/SiO2 nanocomposites were calculated based on a theoretical model for binary composite materials which illustrated a strong correlation to the size of the metallic core and the dielectric shell. Dynamic light scattering analysis of the Ag/SiO2 nanocomposites revealed that the refractive index of the nanocomposites was about 2.40, which was well in the range predicted by theoretical modeling. Optical absorption spectra and silver quantum dot size induced color change of the Ag/SiO2 nanocomposites suspension were also investigated.  相似文献   

3.
The silanol-modified polystyrene microspheres were prepared through dispersion polymerization. Then copper sulfide particles were grown on silanol-modified polystyrene through sonochemical deposition in an aqueous bath containing copper acetate and sulfide, released through the hydrolysis of thioacetamide. The resulting particles were continuous and uniform as characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared, thermogravimetric analysis and UV–vis absorption spectroscopy were used to characterize the structure and properties of core–shell particles. The results showed the coating thickness of CuS shell can be controlled by the amount of silanol and the UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS.  相似文献   

4.

To achieve highly efficient electromagnetic wave absorber, elaborately designing magnetic–dielectric Co@TiO2 microspheres with core–shell configuration are successfully constructed through a facile sequential process of liquid phase reduction–sol–gel–annealing. Owing to the core–shell configuration and the synergistic effect among magnetic and dielectric components, the annealed sample shows outstanding electromagnetic wave absorption (EMA) in X and Ku band. Impressively, a maximum reflection loss (RLmax) is reached?–56.6 dB at a coating thickness of 2.3 mm with corresponding effective absorption bandwidth (EAB10) of 7.2 GHz (including 65% of Ku band and 82.5% of X band), much stronger than those of as-prepared Co (EAB10 of 1.6 GHz, RLmax of 14.6 dB) and pristine Co@TiO2 (EAB10 of 2.9 GHz, RLmax of 16.3 dB). An EAB10 covering completely the whole X and Ku band could be obtained by controlling the thickness only from 2.0 mm to 2.5 mm. The composites have both outstanding RL and wide EAB10 with the thin coating thickness, reinforcing that fabricating core–shell configuration composites is an efficient strategy to boost the EMA efficiency.

  相似文献   

5.
Abstract

An environment-friendly hydrothermal method was used to prepare TiO2@C core–shell composite using TiO2 as core and sucrose as carbon source. TiO2@C served as a support for the immobilization of Ag by impregnation in silver nitrate aqueous solution. The chemical structures and morphologies of TiO2@C and TiO2@C/Ag composite were characterized by x-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, energy dispersive x-ray spectroscopy and Brunauer–Emmett–Teller (BET) analysis. The antibacterial properties of the TiO2@C/Ag core–shell composite against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were examined by the viable cell counting method. The results indicate that silver supported on the surface of TiO2@C shows excellent antibacterial activity.  相似文献   

6.
7.
Naturally superhydrophilic TiO2–SiO2 composite films were deposited through a sol–gel route and the morphology of these films was artificially modified by nanosphere lithography using polystyrene spheres. Morphology changes induced by this structuration were studied by optical, scanning electron, and atomic force microscopy. The water wettability of the so-obtained films over aging under ambient atmosphere was then studied with respect to the sol composition and morphological features. This study i/confirms the assumption of a natural superhydrophilicity of composite films intrinsically induced by TiO2–SiO2 granular interfaces and ii/shows that this property can be greatly improved by artificially induced morphology features. Such features are discussed on the basis of well-established surface thermodynamic models.  相似文献   

8.
9.
Journal of Materials Science: Materials in Electronics - In this study, we explore poly(vinylidene fluoride) (PVDF) filled with the core–shell nanofillers of silicon dioxide-coated...  相似文献   

10.
Silica/CdS core–shell nanostructures have been developed using a simple wet chemical route. This method utilizes silica spheres formation followed by successive ionic layer adsorption and reaction method assisted CdS shell layer formation. The morphological studies revealed the uniformity in size distribution with core size of 250 nm and shell thickness of 9 nm. The electron microscopic images also indicate the irregular morphology of CdS shell layer. The structural studies indicate the simple cubic system of CdS shell with no other trace for impurities in the crystal structure. This CdS layer exhibit the band gap energy of 2.66 eV, due to weak quantum confinement and numerous defects presence. The studies on room temperature photoluminescence measurement indicate the emission properties and the corresponding electronic energy levels of defect states. Further, the physiochemical understanding of core–shell formation mechanism clearly matches with the motive behind the defects present in the CdS shell layer.  相似文献   

11.
In this study, acrylonitrile–styrene–acrylic terpolymer/styrene–acrylonitrile copolymer/acrylic resin (ASA/SAN/ACR) ternary blends with different compositions were prepared by melting blending. Properties of the ternary blends were studied by differential scanning calorimetry, heat distortion temperature (HDT), Fourier transform infrared (FTIR) spectra, melt flow rate (MFR), mechanical properties, and scanning electron microscopy (SEM). The blends showed two T gs at about −48 and 109 °C. FTIR analyses showed no strong interactions between the characteristic groups existed in the prepared blends. No obvious phase separation observed in SEM images indicated good compatibility in the blend system. With respect to mechanical properties and processability, the addition of ACR not only led to the improvement of impact strength and elongation at break, but also the decline of tensile strength, flexural properties, hardness, and MFR. Furthermore, heat resistance of ASA/SAN (70/30) binary blends decreased with the addition of ACR, but the HDT of ASA/SAN (30/70) almost remain unchanged.  相似文献   

12.
13.
This work presents a novel and simple route for the synthesis of water-soluble core–shell chitosan–gold nanocomposites. The experimental procedure can be summarized by the following steps: (i) chitosan deacetylation, (ii) chitosan depolymerization, (iii) chitosan nanoparticles’ formation and (iv) chitosan–gold nanocomposite formation. FT-IR spectroscopic results indicate that the formation of chitosan nanoparticles (ChtNPs) occurs via NH3+ and PO groups electrostatic interactions, while UV–vis spectra points to a possible embedding of gold nanoparticles into the ChtNPs. This feature was confirmed by electronic transmission microscopy measurements. Chitosan and gold are biocompatible materials. Added to this, the obtained chitosan–gold nanocomposites presented thermal and absorbance properties which strongly point to their potential use in phototherapeutic processes.  相似文献   

14.
Journal of Materials Science: Materials in Electronics - Quantum dots (QDs) attract extensive attention because of their excellent optoelectronic performance. However, few research has been done on...  相似文献   

15.
Spherical and nanoporous TiO2 and TiO2–SiO2 mixed micro-particles with four different compositions (20/80, 50/50, 80/20, 90/10 in weight ratio of TiO2/SiO2) were prepared by spray drying method from colloidal mixtures of amorphous silica and anatase titania nanoparticles. The as-prepared particles were heat-treated at 900 °C for 0.5–5 h. The TiO2 and TiO2–SiO2 particles were spherical in shape and the average particle diameter was about 1 μm. The anatase mass fraction and the specific surface area of TiO2–SiO2 (50 wt.% SiO2) mixed particles were kept to 61.5% and 30.6%, respectively, of their initial values after 5 h heat-treatment whereas these values of TiO2 particles were rapidly decreased to 13.0% and 1.2% of their initial values, respectively, within 30 min after heat-treatment. And the anatase mass fraction and specific surface area increased as SiO2 content in the TiO2–SiO2 mixed particles increased.  相似文献   

16.
Abstract

Composite molecular sieves, FAU/SBA-15, having core-shell structure were synthesized. The synthesized composite sieves were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), pyrolysis fourier transform infrared (Py-FTIR) spectroscopy, temperature programmed desorption spectra (NH3-TPD), UV Raman spectroscopy, nuclear magnetic resonance (NMR) and other techniques. XRD, SEM, TEM, N2 adsorption-desorption, mass spectrometry, NMR and EDS results showed that the composite molecular sieve contained two pore channels. Py-FTIR results showed that the addition of HY molecular sieves improved the acidity of the composite zeolite. The crystallization mechanism during the growth of FAU/SBA-15 shell was deduced from the influence of crystallization time on the synthesis of FAU/SBA-15 core-shell structured composite molecular sieve. HY dissociated partially in H2SO4 solution, and consisted of secondary structural units. This framework structure was more stable than its presence in the isolated form on the same ring or in the absence of Al. Thus it played a guiding role and connected with SBA-15 closely through the Si-O bond. This resulted in the gradual covering of the exterior surface of FAU phase by SBA-15 molecular sieves. The presence of SBA-15 restricted the formation of the other high mass components and increased the selectivity towards ethylbenzene.  相似文献   

17.
Silica gel supported titanium dioxide particles (TiO2–SiO2) prepared by sol–gel method was as photocatalyst in the degradation of β-naphthol in water under UV-illumination. The prepared sample has been characterized by powder X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The supported catalyst had large surface area and good sedimentation ability. The photodegradation rate of β-naphthol under UV-irradiation depended strongly on adsorption capacity of the catalyst, and the photoactivity of the supported catalyst was much higher than that of the pure titanium dioxides. The experiments were measured by high performance liquid chromatography (HPLC). The photodegradation rate of β-naphthol using 60% TiO2–SiO2 particles was faster than that using TiO2 “Degussa P-25”, TiO2 “PC-50” and TiO2 “Aldrich” as photocatalyst by 2.7, 4 and 7.8 times, respectively. The kinetics of photocatalytic β-naphthol degradation was found to follow a pseudo-first-order rate law. The effect of the TiO2 loading on the photoactivity of TiO2–SiO2 particles was also discussed. With good photocatalytic activity under UV-irradiation and the ability to be readily separated from the reaction system, this novel kind of catalyst exhibited the potential effective in the treatment of organic pollutants in aqueous systems.  相似文献   

18.
Electrocatalytic conversion of oxygen holds great potential for clean energy technologies,including water electrolysis,regenerative fuel cells,and rechargeable metal-air batteries.The development of highly efficient and inexpensive oxygen electrocatalysts as replacements for precious metal-based catalysts is vitally important for large-scale practical application in the future.A bifunctional oxygen electrocatalyst based on FeCo nanoparticles/N-doped carbon core-shell spheres supported on N-doped graphene sheets was prepared via one-step pyrolysis of graphitic carbon nitride and acetylacetonates.The optimized product exhibited an oxygen electrode activity of 0.87 V and excellent durability.The remarkable performance is mainly attributed to the synergetic effect arising from the FeCo nanoparticles and N-doped carbon shell.This study introduces an inexpensive and simple way to develop highly active bifunctional oxygen electrocatalysts.  相似文献   

19.
The current article reports on providing surface modification of magnetic nanoparticles with gold to provide stability against aggregation. Gold-coated magnetite nanoparticles were synthesised to combine both magnetic as well as surface plasma resonance (SPR) properties in a single moiety. The nanocomposites were produced by reduction (using ascorbic acid) of gold chloride on to the surface of iron oxide nanoparticles. Ascorbic acid not only acts as a reducing agent, but also the oxidised form of ascorbic acid i.e. Dehydro-ascorbic acid acts as a capping agent to impart stability to as synthesised gold-coated iron oxide nanocomposites. The synthesised nanocomposite was monodispersed with a mean particle size of around 16 nm and polydispersity index of 0.190. X-ray diffraction analysis confirms presence of gold on the surface of magnetite nanoparticles. The synthesised nanocomposites had a total organic content of around 3.2% w/w and also showed a shifted SPR peak at 546 nm as compared to gold nanoparticles (528 nm). Both uncoated and gold-coated magnetite exhibited superparamagnetic behaviour at room temperature. Upon coating with gold shell, saturation magnetisation of iron oxide nanoparticles decreases from 42.806 to 3.54 emu/gram.  相似文献   

20.
The composite nanoparticles of gold core coated with SiO2 shell have been fabricated into 2-dimensional array on a silicon surface by a simple self-assembly method combined with the technique of AFM (atomic force microscopy) nanolithography. The double-barrier-tunneling junction with AFM tip was also fabricated for the room-temperature single-electron tunneling study, by which the AFM tip was orientated on the surface of the SiO2 coated gold composite nanoparticles. The 2D array shows well-pronounced Coulomb staircases with a period of 200 mV at room temperature, demonstrating single electron transistor behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号