首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the mix design of self-consolidating concrete (SCC) differs from that of conventional concrete, mechanical properties of SCC may differ from those of vibrated concrete. An experimental program was performed to evaluate mechanical properties of SCC used for precast, prestressed applications. Sixteen SCC mixtures with a fixed slump flow of 680 ± 20 mm were prepared with different mixture parameters, including binder content and binder type, w/cm, dosage of viscosity-modifying admixture, and sand-to-total aggregate volume ratio. Two high-performance concrete mixtures that represent typically concrete used for precast, prestressed applications were investigated for the control mixtures. They were proportioned with 0.34 and 0.38 w/cm and had slump values of 150 mm. Mechanical properties of SCC were compared to code provisions to estimate compressive strength, elastic modulus, and flexural strength. The modified ACI 209-90 and CEB-FIP MC90 codes are found to provide good estimate for compressive strength prediction. The AASHTO 2007 model can provide good prediction of the elastic modulus and flexural strength of SCC.  相似文献   

2.
目的 基于不同变形机制的负泊松比结构优化设计新型复合多孔结构样件,增加力学性能的调控维度,以满足人体骨低弹性模量的匹配要求。方法 用内凹多边形替代手性结构的圆环,以获得新型的复合胞元结构。利用选区激光熔化成形技术制备负泊松比多孔人工骨样件,通过压缩实验揭示胞元结构类型、结构参数、孔隙率对屈服强度、弹性模量的影响规律,评测不同结构样件与人体骨间的力学性能匹配程度。结果 当孔隙率为65%~85%时,复合结构样件的成形质量、力学性能基本介于手性结构的和内凹结构的之间,且与孔隙率密切相关。手性结构、内凹结构和复合结构的弹性模量分别为2.39~4.64、1.12~3.77、1.01~3.47 GPa,屈服强度分别为65.19~223.06、45.25~195.81、26.54~143.58MPa。复合结构的弹性模量随环径和内凹角度的增大而减小。当孔隙率为75%时,环径由2.4 mm变至2.0 mm,弹性模量由2.651 GPa降低至2.082 GPa。当内凹角度由85°变至65°时,弹性模量则由3.566GPa降低至1.982GPa。结论 复合胞元结构可以融合材料特性,增加调控维度,进而匹配人工...  相似文献   

3.
The compressive strength and the biocompatibility were assessed for the porous Ti–25 wt%Nb alloy fabricated by the combination of the sponge impregnation technique and sintering technique. The alloy provided pore sizes of 300–600 μm, porosity levels of 71 ± 1.5 %, in which the volume fraction of open pores was 94 ± 1.3 %. The measurements also showed that the alloy had the compressive Young’s modulus of 2.23 ± 0.5 GPa and the strength of 98.4 ± 4.5 MPa, indicating that the mechanical properties of the alloy are similar to those of human bone. The scanning electron microscopy (SEM) observations revealed that the pores were well connected to form three-dimension (3D) network open cell structure. Moreover, no obvious impurities were detected in the porous structure. The experiments also confirmed that rabbit bone mesebchymal stem cells (MSCs) could adhere and proliferate in the porous Ti–25 wt%Nb alloy. The interactions between the porous alloy and the cells are attributed to the porous structure with relatively higher surface. The suitable mechanical and biocompatible properties confirmed that this material has a promising potential in the application for tissue engineering.  相似文献   

4.
In this work, porosity-property relationships of quasi-brittle materials are explored through a combined experimental and numerical approach. In the experimental part, hemihyrate gypsum plaster powder (\(\hbox {CaSO}_{4}\cdot 1/2\hbox {H}_{2}\hbox {O}\)) and expanded spherical polystyrene beads (1.5–2.0 mm dia.) have been mixed to form a model material with controlled additions of porosity. The expanded polystyrene beads represent pores within the bulk due to their light weight and low strength compared with plaster. Varying the addition of infill allows the production of a material with different percentages of porosity: 0, 10, 20, 30 and 31 vol%. The size and location of these pores have been characterised by 3D X-ray computed tomography. Beams of the size of \(20 \times 20 \times 150\) mm were cast and loaded under four-point bending to obtain the mechanical characteristics of each porosity level. The elastic modulus and flexural strength are found to decrease with increased porosity. Fractography studies have been undertaken to identify the role of the pores on the fracture path. Based on the known porosity, a 3D model of each microstructure has been built and the deformation and fracture was computed using a lattice-based multi-scale finite element model. This model predicted similar trends as the experimental results and was able to quantify the fractured sites. The results from this model material experimental data and the lattice model predictions are discussed with respect to the role of porosity on the deformation and fracture of quasi-brittle materials.  相似文献   

5.
Open-porous titanium scaffolds have been widely investigated for orthopaedic and dental applications because of their ability to form composites via bone ingrowth into pores and promote implant fixation with mother bone. In this work, porous titanium scaffolds coated with a diamond-like carbon were produced, and their ability to form biocomposites was evaluated through in vivo experiments. Three types of the open-porous scaffolds made of spongy titanium granules (porosity 0.3, 0.4 and 0.5, Young’s modulus 4.4, 3.5 and 0.6 GPa) were implanted into a bone defect of sheep. Time dependences of the Young’s modulus of titanium scaffold–bone tissue biocomposites were determined through the measurement of Young’s modulus of the extracted scaffolds after 4, 8, 24 and 52 weeks of surgery. The Young’s modulus of biocomposite is dependent not only on the time of composite formation but also on the porosity of scaffold.  相似文献   

6.
Porous titanium and titanium alloys are promising scaffolds for bone tissue engineering, since they have the potential to provide new bone tissue ingrowth abilities and low elastic modulus to match that of natural bone. In the present study, porous Ti–7.5Mo alloy scaffolds with various porosities from 30 to 75 % were successfully prepared through a space-holder sintering method. The yield strength and elastic modulus of a Ti–7.5Mo scaffold with a porosity of 50 % are 127 MPa and 4.2 GPa, respectively, being relatively comparable to the reported mechanical properties of natural bone. In addition, the porous Ti–7.5Mo alloy exhibited improved apatite-forming abilities after pretreatment (with NaOH or NaOH + water) and subsequent immersion in simulated body fluid (SBF) at 37 °C. After soaking in an SBF solution for 21 days, a dense apatite layer covered the inner and outer surfaces of the pretreated porous Ti–7.5Mo substrates, thereby providing favorable bioactive conditions for bone bonding and growth. The preliminary cell culturing result revealed that the porous Ti–7.5Mo alloy supported cell attachment.  相似文献   

7.
Porous bioceramics with high porosity for bone tissue engineering were fabricated by the foam impregnation technique, but their mechanical strength was poor, only a mean compressive strength of 1.04 ± 0.15 MPa and an mean elastic modulus of 0.1 GPa. In order to reinforce porous ceramics, the ceramic samples were immerged in 5% gelatin solution and gelatin coatings were formed on the inter-surface of their pores. It was found that the mean compressive strength value and the mean elastic modulus value of porous samples coated with gelatin were improved to 5.17 ± 0.17 MPa and 0.3 GPa respectively without sacrificing their porosity greatly. Moreover composite samples were not as fragile as sintered ceramics. The results indicated that the gelatin coatings on the inter-surface of pores reinforced porous bioceramics effectively.  相似文献   

8.
目的 探究温度和孔隙率对闭孔泡沫铝材料压缩力学性能和变形机理的影响。方法 将孔隙率为84.3%~87.3%的泡沫铝试件在温度25~700 ℃内进行加热处理,对处理后的试样开展准静态压缩实验。结果 在准静态压缩条件下,闭孔泡沫铝材料在不同温度加热处理后的压缩应力–应变曲线均经历了3个阶段:弹性阶段、塑性平台阶段和密实阶段。孔隙率从87.3%减小到84.3%时,其弹性模量增大了44.4 MPa,屈服强度增大了0.39 MPa,平台应力增大了0.94 MPa。孔隙率为84.3%的泡沫铝,在25 ℃时,其弹性模量为141.4 MPa、屈服强度为4.25 MPa、平台应力为4.75 MPa;当加热温度为500 ℃时,弹性模量减小到了128.0 MPa、屈服强度减小到了4.22 MPa、平台应力减小到了4.51 MPa。结论 泡沫铝的弹性模量、抗压屈服强度和平台应力均随孔隙率的增加而减小;加热温度低于500 ℃以下时,泡沫铝材料力学性能变化很小,但屈服强度和弹性模量均小幅度降低;在压缩载荷下,泡沫铝的变形破坏模式呈现出先从试件铝基体较薄弱部分产生孔壁塑性变形、孔洞坍塌,并逐渐出现断裂压缩带,直至泡沫铝孔洞完全坍塌密实。  相似文献   

9.
In this study, highly dense ZrB2-20 vol% SiC composites with 3–10 wt% VC additives were prepared by hot-pressing at 1750 °C for 1 h under a pressure of 20 MPa in a vacuum. The densification behavior and elastic and mechanical properties of the obtained composites were examined, and the effect of the VC content on the densification and the properties is analyzed. The addition of VC promotes the activation of densification mechanism at a lower temperature and inhibits the growth of ZrB2 and SiC grains during the sintering. In addition, the elastic moduli, hardness and fracture toughness that measured in the obtained composites are constant and independent of the VC content, with a shear modulus of ~ 220 GPa, Young’s modulus of ~ 500 GPa, hardness of ~ 20 GPa and fracture toughness of ~ 4.4 MPa m1/2. On the other hand, the flexural strength of the composites decreased as the VC content increased from 3 to 7 wt% and then it increased with further increasing the VC content to 10 wt%, with strength values of 620–770 MPa.  相似文献   

10.
Alumina/glass composites were fabricated by three‐dimensional printing (3DP?) and pressureless infiltration of lanthanum‐alumino‐silicate glass into sintered porous alumina preforms. The preforms were printed using an alumina/dextrin powder blend as a precursor material. They were sintered at 1600 °C for 2 h prior to glass infiltration at 1100 °C for 2 h. The influence of layer thickness and sample orientation within the building chamber of the 3D‐printer on microstructure, porosity, and mechanical properties of the preforms and final composites was investigated. The increase of the layer thickness from 90 to 150 µm resulted in an increase of the total porosity from ~19 to ~39 vol% and thus, in a decrease of the mechanical properties of the sintered preforms. Bending strength and elastic modulus of sintered preforms were found to attain significantly higher values for samples orientated along the Y‐axis of the 3D‐printer compared to those orientated along the X‐ or the Z‐axis, respectively. Fabricated Al2O3/glass composites exhibit improved fracture toughness, bending strength, Young's modulus, and Vickers hardness up to 3.6 MPa m1/2, 175 MPa, 228 GPa, and 12 GPa, respectively. Prototypes were fabricated on the basis of computer tomography data and computer aided design data to show geometric capability of the process.  相似文献   

11.
Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57?%. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210?μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75?% tissue colonization compared to the 40?% value for the untreated titanium.  相似文献   

12.
The high Young’s modulus of titanium with respect to that one of the bone is the main cause of the stress-shielding phenomenon, which promotes bone resorption around implants. Development of implants with a low Young’s modulus has gained increased importance during the last decade, and the manufacturing of porous titanium is one of the routes to reduce this problem. In this work, porous samples of commercially pure titanium grade IV obtained by powder metallurgy with ammonium bicarbonate (NH4HCO3) as space-holder were studied. Evaluations of porosity and mechanical properties were used to determine the influence of compaction pressure for a fixed NH4HCO3 content. Measurements by ultrasound tests gave Young’s modulus results that were low enough to reduce stress shielding, whilst retaining suitable mechanical strength. Biological tests on porous cp Ti showed good adhesion of osteoblasts inside the pores, which is an indicator of potential improvement of osteointegration.  相似文献   

13.
Cr3C2–NiCr cermets are used as metal cutting tools due to their relatively high hardness and low sintering temperatures. In this study, a powder mixture consisting of 75 wt% Cr3C2–25 wt% NiCr was sintered at four different temperatures and characterized for its microstructure and mechanical properties. The highest relative density obtained was 97% when sintered at 1350 °C. As the relative density increased, elastic modulus, transverse rupture strength, fracture toughness and hardness of the samples reached to a maximum of 314 GPa, 810 MPa, 10·4 MPa·m1/2 and 11·3 GPa, respectively. However, sintering at 1400 °C caused further grain growth and pore coalescence which resulted in decreasing density and degradation of all mechanical properties. Fracture surface investigation showed that the main failure mechanism was the intergranular fracture of ceramic phase accompanied by the ductile fracture of the metal phase which deformed plastically during crack propagation and enhanced the fracture toughness.  相似文献   

14.
Using the first-principles calculations, a cluster-plus-glue-atom model was employed to investigate the elastic and electronic properties of Ti–Mo–Nb alloys with cluster formula of [MoTi14] (glue atom) x (glue atom = Ti, Mo, Nb, x = 1 or 3) for a theoretical guidance in composition design of β titanium alloys. The bulk modulus, shear modulus, Young’s modulus, and Poisson ratio were evaluated from the calculated elastic constants using Voigt–Reuss–Hill average scheme on the periodic supercell model of cluster packing. The electronic properties of the Ti–Mo–Nb alloys were discussed by analyzing the electron density of state and Mulliken population. Meanwhile, we designed two series of Ti–Mo–Nb alloys, i.e., [MoTi14]X1 (X = Ti, Mo, Nb) and [YTi14]Nb3 (Y = Ti, Mo), and experimentally measured their mechanical properties. Our theoretical results (including mass density, Young’s modulus, ductility) based on our cluster packing model agreed well with the experimental data, especially for [TiMo14]X1 (X = Ti, Mo, Nb) alloy series. On the contrary, the random solid solution structures were mechanically unstable and the calculated values significantly deviated from the experiments. Based on the cluster-plus-glue-atom model, an Ashby map of E/ρ versus B/G was constructed and indicated the inverse correlation between stiffness and ductility, for which the random solid solution model was unable to reflect. The Mo/Ti = 1/14 rule derived from the cluster model may serve as an important guideline for composition design of Ti–Mo based systems to achieve low elastic modulus alloys with stable β phase.  相似文献   

15.
含孔隙混凝土复合材料有效力学性能研究   总被引:3,自引:1,他引:2  
杜修力  金浏 《工程力学》2012,29(6):70-77
混凝土、岩石等工程材料是典型的多孔介质材料,孔隙或微裂纹的存在对材料的弹性模量及强度等力学参数产生很大影响。该文基于三相球模型确定了含孔隙复合材料的有效体积模量,提出采用空心圆柱形杆模型推导得到了含孔隙复合材料有效剪切模量的理论公式,并在各向同性材料的假设条件下确定了材料的有效弹性模量及泊松比;推导并得到了含孔隙材料的有效抗拉、抗压强度及有效抗剪强度与孔隙率之间的定量关系公式,并进一步得到了含孔基质在达到有效强度时的临界应变与孔隙率之间的定量关系。结果表明该文方法能较好的预测含孔混凝土材料的有效力学性能,且公式简单,易于应用。  相似文献   

16.
Chitosan–multiwalled carbon nanotubes/hydroxyapatite nanocomposites were synthesized by a novel in situ precipitation method. The electrostatic adsorption between multiwalled carbon nanotubes and chitosan was investigated and explained by Fourier transform infrared spectroscopy analysis. Morphology studies showed that uniform distribution of hydroxyapatite particles and multiwalled carbon nanotubes in the polymer matrix was observed. In chitosan–multiwalled carbon nanotubes/hydroxyapatite nanocomposites, the diameters of multiwalled carbon nanotubes were about 10 nm. The mechanical properties of the composites were evaluated by measuring their compressive strength and elastic modulus. The elastic modulus and compressive strength increased sharply from 509.9 to 1089.1 MPa and from 33.2 to 105.5 MPa with an increase of multiwalled carbon/chitosan weight ratios from 0 to 5 %, respectively. Finally, the cell biocompatibility of the composites was tested in vitro, which showed that they have good biocompatibility. These results suggest that the chitosan–multiwalled carbon nanotubes/hydroxyapatite nanocomposites are promising biomaterials for bone tissue engineering.  相似文献   

17.
Willemite (Zn2SiO4) ceramics were prepared by sintering the willemite green compacts. The effects of sintering temperature on the linear shrinkage, porosity and mechanical strength of the ceramics were examined. With the sintering temperature increased, the linear shrinkage of the ceramics increased and the porosity decreased. When sintered at 1,300°C, willemite ceramics showed mechanical properties of the same order of magnitude as values for human cortical bone, as measured by bending strength (91.2 ± 4.2 MPa) and Young’s modulus (37.5 ± 1.5 GPa). In addition, the adhesion and proliferation of rabbit bone marrow stromal cells (BMSCs) on willemite ceramics was investigated. The results showed that the ceramics supported cell adhesion and stimulated the proliferation. All these findings suggest that willemite ceramics possess suitable mechanical properties and favorable biocompatibility and might be a promising biomaterial for bone implant applications.  相似文献   

18.
In this study, hyaluronic acid–gelatin (HyA–Gel) scaffolds were prepared with HyA:Gel ratios of 15:85, 50:50, and 85:15 with the goal of obtaining a porous biocompatible scaffold for bone tissue engineering applications. Scanning electron microscopy and Fourier-transform infrared spectroscopy were done to characterize the morphological orientations of the scaffolds. The biocomposite structure was highly porous and the pores in the scaffolds were interconnected. The compressive strength of the scaffold was 7.39 ± 0.2 MPa for the HyA–Gel when fabricated at a ratio of 15:85. To assess the biocompatibility and cell behavior on the HyA–Gel biocomposite, the proliferation of MG-63 osteoblast cell on the scaffolds was examined using the MTT assay, optical microscopy, and confocal microscopy. Collagen type I and osteopontin expression of cells cultured on the scaffolds were examined using immunoblotting. The scaffolds fabricated with a 15:85—HyA:Gel ratio showed excellent biocompatibility, good mechanical properties, and high porosity, which suggest that the highly porous scaffold holds great promise for use in bone tissue engineering applications.  相似文献   

19.
Effective mechanical properties of microballoon-dispersed epoxy and urethane are studied under quasi-static and dynamic loading conditions. Elastic modulus measurements of these mixtures over a volume fraction range of 0–0.45 are in good agreement with Hashin-Shtrikman lower-bound predictions for two-phase mixtures comprising of randomly distributed spherical pores in an elastic matrix. The measurements have also been predicted accurately by a LEFM based pore-flaw model for a selected flaw size to pore size ratio. These imply that the microballoons offer negligible reinforcement due to extremely small wall thickness to diameter ratio. Accordingly, feasibility of using these materials to simulate controlled porosity for tensile strength and fracture toughness modeling is explored. Measured tensile strength and fracture toughness values decrease monotonically similar to the Young's modulus variation with volume fraction of microballoons. Guided by the measurements linear elastic models for porous materials that predict tensile strength and fracture toughness of these mixtures are proposed and validated. The tensile strength predictions are in very good agreement with measurements for both epoxy and urethane compositions. The quasi-static crack initiation toughness prediction captures the measurement trends rather well in both cases. The agreement between the measurements and predictions are modest for epoxy matrix while they are good for urethane compositions. Based on fracture surface micrography, an empirical corrective procedure is advanced to improve the agreement between the measurements and the model. The dynamic crack initiation toughness measurements for epoxy, on the other hand, are in excellent agreement with the predictions.  相似文献   

20.
目的 确定既满足强度要求又能够有良好长期稳定性的梯度多孔牙种植体最佳孔隙值。方法 设计4组不同孔隙率(G30、G40、G50、G60)的梯度多孔结构样件及均质多孔样件S30,选区激光熔化(SLM)成型后通过准静态压缩试验对其力学性能进行研究,测量出样件的弹性模量和屈服强度。通过有限元分析评估不同孔隙率种植体及对应下颌骨组织的应力分布。结果 相较于实体钛合金结构(110 GPa),多孔结构的弹性模量(13.47~15.88 GPa)已完全符合人体自然骨组织(2~20 GPa)范围,多孔结构屈服强度(484.81~834.47 MPa)远高于皮质骨(180.5~211.7 MPa);梯度多孔结构样件弹性模量相较于均质多孔结构略有提升,屈服强度(834.47 MPa)比均质多孔结构样件(730.56 MPa)提高了约14%。梯度多孔种植体周围皮质骨最大等效应力值分布在43.362 9~45.015 4 MPa之间,松质骨最大等效应力值分布在4.756 58~ 5.055 6 MPa之间,完全满足2~60 MPa范围内的最大应力,适合骨组织生长。种植体与下颌骨之间的应力差值随着孔隙率的增大而逐渐变大,孔隙率为30%的TPMS–G型梯度多孔牙种植体与下颌骨应力差值最小,生物力学特性最佳,有利于形成稳定的骨整合。结论 通过试验及仿真模拟,确定了适用于种植体的最佳梯度多孔结构,既满足强度要求,又具有良好的长期稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号