首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pilot UASB reactor coupled with an external ultrafiltration (UF) membrane was operated under three different hydraulic retention times (HRT) for domestic wastewater treatment. The aim was to assess the HRT influence on system performance and fouling. The highest concentrations of COD, total solids, extracellular polymeric substances (EPS) and soluble microbial products (SMP) in UASB effluent and permeate were found when the UASB reactor was operated under the lowest HRT studied (4 hours); although the fulfillment of Mexican Standard for wastewater reclamation was not compromised. This fact could be attributed to the higher shear stress forces inside the UASB reactor when it was operated at low HRT, which promoted the release of biopolymeric substances in its effluent. Besides, the fouling propensity in the UASB effluent was worsened with HRT reduction, by increasing the fouling rate and the specific cake resistance. Based on these results, it is recommended to avoid operating the UASB reactor at low HRTs (less than 4 hours) in order to control SMP and EPS fouling potential. The results presented also suggest that HRT reduction has a detrimental effect on performance and fouling.  相似文献   

2.
The generation of brine solutions from dense membrane (reverse osmosis, RO or nanofiltration, NF) water reclamation systems has been increasing worldwide, and the lack of cost effective disposal options is becoming a critical water resources management issue. In Singapore, NEWater is the product of a multiple barrier water reclamation process from secondary treated domestic effluent using MF/UF-RO and UV technologies. The RO brine (concentrates) accounts for more than 20% of the total flow treated. To increase the water recovery and treat the RO brine, a CDI based process with BAC as pretreatment was tested. The results show that ion concentrations in CDI product were low except SiO2 when compared with RO feed water. CDI product was passed through a RO and the RO permeate was of better quality including low SiO2 as compared to NEWater quality. It could be beneficial to use a dedicated RO operated at optimum conditions with better performance to recover the water. BAC was able to achieve 15-27% TOC removal of RO brine. CDI had been tested at a water recovery ranging from 71.6 to 92.3%. CDI based RO brine treatment could improve overall water recovery of NEWater production over 90%. It was found that calcium phosphate scaling and organic fouling was the major cause of CDI pressure increase. Ozone disinfection and sodium bisulfite dosing were able to reduce CDI fouling rate. For sustainable operation of CDI organic fouling control and effective organic fouling cleaning should be further studied.  相似文献   

3.
综述了我国中水深度处理工艺的发展历程、相关工艺在国内电厂的主要研究与应用情况及其主要问题与控制策略。石灰混凝法是热电厂中水回用的第二代处理工艺,应用广泛;双膜法及全膜法具有更高的污染物去除效率,已成为目前热电厂中水回用的主流深度处理工艺。膜污染是膜法深度处理工艺的限制因素,膜污染形成机制与控制策略研究成为中水回用领域的研究热点和难点。随着水处理技术及设备的发展,一些新型的材料、技术和设备也逐渐推广应用于热电厂的中水深度处理;未来城市中水将成为热电厂的第一水源,膜法将成为中水深度处理与回用的最关键工艺,其预处理和深度处理工艺将实现多样化与高效化的发展。  相似文献   

4.
Design considerations for wastewater treatment by reverse osmosis.   总被引:2,自引:0,他引:2  
Reverse Osmosis is finding increasing use for the treatment of municipal and industrial wastewaters due to the growing demand for high quality water in large urban areas. The growing success of membranes in this application is related to improved process designs and improved membrane products. Key factors which have been determined to result in successful operation of large-scale plants will be discussed. Factors which play a key role in the use of RO membranes include ultra or microfiltration pretreatment, low fouling membranes, flux rate, recovery and control of fouling and scaling. In particular, high flux rates can be used when UF or MF pretreatment is used. These technologies remove most of the suspended particles that would normally cause heavy fouling of lead elements. Typically, fluxes in the range of 17-21 lmh lead to cleaning frequencies in the range of 3-4 months. By combining the use of membrane pretreatment and chloramination of the feed water through chlorine addition, two of the primary sources of RO membrane fouling can be controlled. The use of chloramine has become a proven means to control biofouling in a membrane for wastewater applications. The other significant problems for RO membranes result from organics fouling by dissolved organics and scaling due to saturation of marginally soluble salts. The former can be a significant problem for membranes, due to the strong attraction forces. To some extent, these can be mitigated by making the membrane surface more hydrophilic or changing the charge of the membrane surface. To minimize fouling, many plants are turning to low fouling membranes. Extensive studies have demonstrated that the membrane surface is hydrophilic, neutrally charged over a broad pH range, and more resistant to organic adsorption. Also, an analysis of the potential scaling issues will be reviewed. In particular, calcium phosphate has been found to be one of the key scalants that will limit RO system recovery rate. Calcium phosphate concentrations can reach high values in many wastewaters, and scaling of this compound is not often modeled in most RO projection software. Various process options will be presented to evaluate the most economic means of avoiding phosphate scaling. Finally, data from major RO wastewater treatment plants will be presented to show how the RO membranes operate under actual conditions, utilizing many of these design features. Long-term data from the 2.6 mgd Bedok demonstration Plant demonstrate that the RO membranes operate consistently on wastewater. Experiences from the 8.5 mgd (32,000 m3/day) Bedok and 10.5 mgd (40,000 m3/day) Kranji plants will also be presented. These large plants started operation in the fall of 2002 and have demonstrated an effective means to reclaim high quality water from difficult source waters, such as municipal wastewaters.  相似文献   

5.
Dyeing wastewater was post-treated by using nanofiltration (NF) and reverse osmosis (RO) membranes. To reduce membrane fouling, poly (vinyl alcohol) (PVA) with a neutral charge was coated on NF and RO membranes. The effect of surface charge and surface roughness on membrane fouling was investigated. Dyeing wastewater was pre-treated by using coagulation, activated sludge process, and MF process to investigate the effect of the pre-treatment on the membrane fouling. It is demonstrated that the extent of fouling is significantly influenced by the surface roughness and the surface charge on the NF and RO membranes. A membrane with a smooth and neutral surface was fouled less. The pre-treatment was essential for avoiding NF and RO membranes fouling. The quality of the final permeate was acceptable for water reuse.  相似文献   

6.
In TFT-LCD industry, water plays a variety of roles as a cleaning agent and reaction solvent. As good quality water is increasingly a scarce resource and wastewater treatment costs rises, the once-through use of industrial water is becoming uneconomical and environmentally unacceptable. Instead, recycling of TFT-LCD industrial wastewater is become more attractive from both an economic and environmental perspective. This research is mainly to explore the capacity of TFT-LCD industrial wastewater recycling by the process combined with membrane bioreactor and reverse osmosis processes. Over the whole experimental period, the MBR process achieved a satisfactory organic removal. The COD could be removed with an average of over 97.3%. For TOC and BOD5 items, the average removal efficiencies were 97.8 and 99.4% respectively. The stable effluent quality and satisfactory removal performance were ensured by the efficient interception performance of the UF membrane device incorporated with biological reactor. Moreover, the MBR effluent did not contain any suspended solids and the SDI value was under 3. After treatment of RO, excellent water quality of permeate were under 5 mg/l, 2.5 mg/l and 150 micros/cm for COD, TOC and conductivity respectively. The treated water can be recycled for the cooling tower make-up water or other purposes.  相似文献   

7.
A study has been conducted to investigate the effect of loading rates on membrane fouling in a moving bed biofilm membrane reactor process for municipal wastewater treatment, especially analysing the fate of submicron colloidal particles and their influence on membrane fouling. Two operating conditions defined as low and high organic loading rates were tested where the development and fate of the particulate material was characterised analysing the particle size distributions throughout the process. Analysis of the membrane performance showed higher fouling rates for the high-rate conditions. The fraction of colloidal submicron particles was higher in the membrane reactor indicating that fouling by these particles was a dominant contribution to membrane fouling.  相似文献   

8.
Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.  相似文献   

9.
The growing demand on water resources has increased the interest in wastewater reclamation for multiple end-use applications such as indirect and direct potable reuse. In these applications, the removal of organic micropollutants is of a greater concern than in conventional wastewater treatment. This article presents a collection of data of trace organic micropollutants in an urban wastewater treatment plant (WWTP) in North East Spain using reverse osmosis (RO) membrane treatment. The RO rejection values of the organic molecules studied with a wide range of solute size and hydrophobicity were determined. Several chromatographic methods monitoring different endocrine disrupting chemicals (EDCs), pharmaceuticals and personal care products (PPCPs) were used. Results indicated that secondary effluents from this Spanish WWTP contained most of the studied organic compounds indicating incomplete removal of organics in the conventional treatment of the plant. However, the rejection of most micropollutants was high for all three RO membrane types (low energy, high rejection, fouling resistant) tested. It was observed that some selected micropollutants were less efficiently removed (e.g. the small and polar and the more hydrophobic) and the molecular weight and membrane material influenced removal efficiencies.  相似文献   

10.
A dispersed-ozone flotation (DOF) separator was devised for a pilot study of tertiary wastewater treatment for re-use purposes. As a compact device combining coagulation, ozonation and flotation in an integrated unit, the DOF separator achieved a very high removal of SS, TOC, UV254 and colour, as well as effective inactivation of coliform and total bacteria within a short hydraulic retention time of 30 min. The finished water quality is comparable to or better than that by a conventional tertiary treatment process using coagulation, sedimentation, filtration and chlorine disinfection, and meets the quality standards for non-drinkable domestic reuse.  相似文献   

11.
In the carwash industry, water recycling is necessary to be in accordance with present and upcoming environmental laws. As this is not possible with traditional techniques, membrane processes (like ultrafiltration (UF) and nanofiltration (NF)) are technically and economically evaluated in this study. Concerning the technical part, there needs to be a compromise between a high permeate permeability on the one hand and a high permeate purity on the other hand. Depending on the use of the purified wastewater, ultrafiltration (to recycle wastewater in the main wash cycle) or nanofiltration (to recycle wastewater in the rinsing step) would be the optimal choice. Concerning the financial part, the implementation of membrane processes in the wastewater purification installation is economically feasible, especially when expensive tap water is used as pure water. These positive evaluations imply that membrane processes can be useful to recycle wastewater in the carwash industry, on condition that the right membrane type (with the least membrane fouling) and the right process format (e.g., hybrid process of UF and/or NF with a biological treatment) is selected.  相似文献   

12.
膜生物反应器(MBR)是膜分离技术和污水生物处理技术有机结合产生的一种新型污水处理工艺,与传统污水处理工艺相比具有很多优点,但膜污染是限制膜生物反应器广泛应用的关键因素.介绍了膜污染的定义,系统论述了膜污染的研究进展,着重从改良膜的性质,改善污泥混合液的特性和优化膜分离操作条件3个方面介绍了国内外有效延缓膜污染的技术措施.  相似文献   

13.
Application of photosynthetic process could be highly efficient and surpass anaerobic treatment in releasing less greenhouse gas and odor while the biomass produced can be utilized. The combination of photosynthetic process with membrane separation is possibly effective for water reclamation and biomass production. In this study, cultivation of mixed culture photosynthetic bacteria from food processing wastewater was investigated in a sequencing batch reactor (SBR) and a membrane bioreactor (MBR) supplied with infrared light. Both photo-bioreactors were operated at a hydraulic retention time (HRT) of 10 days. Higher MLSS concentration achieved in the MBR through complete retention of biomass resulted in a slightly improved performance. When the system was operated with MLSS controlled by occasional sludge withdrawal, total biomass production of MBR and SBR photo-bioreactor was almost equal. However, 64.5% of total biomass production was washed out with the effluent in SBR system. Consequently, the higher biomass could be recovered for utilization in MBR.  相似文献   

14.
An anaerobic submerged membrane bioreactor (AnSMBR) on pilot-scale treating a mixture composed of municipal wastewater and glucose under mesophilic temperature conditions was operated for 206 days. The performance of the AnSMBR was evaluated at different fluxes, biomass concentrations and gas sparging velocities (GSV). GSV was used to control fouling. In addition, the AnSMBR was operated in cycles that included relaxation and backwashing phases. The increase in the transmembrane pressure (fouling rate) was measured under different operational conditions and was used to evaluate the stability of the process. The fouling rate could be controlled for a long period of time at a flux of 7 l m(-2) h(-1) with a GSV of 62 m/h and an average biomass concentration of 14.8 g TSS/L. The membrane was physically cleaned after 156 days of operation. The cleaning efficiency was almost 100% indicating that no irreversible fouling was developed inside the pores of the membrane. The COD removal efficiency was close to 90%. As in anaerobic processes, nutrients were not exposed to degradation and almost no pathogens were found in the effluent, hence the effluent could be used for irrigation in agriculture.  相似文献   

15.
面向染料清洁生产和染料废水处理的纳滤技术   总被引:1,自引:0,他引:1       下载免费PDF全文
综述了纳滤膜对含盐染料溶液的分离原理、纳滤膜的选择、纳滤脱盐浓缩工艺过程与应用研究、纳滤处理染料废水与资源化方面的应用研究、纳滤技术的经济性以及应用过程中膜污染的控制。指出利用纳滤技术改进染料生产工艺是可行的,能够实现染料清洁生产,具有明显的经济效益和环境效益;采用纳滤处理染料废水,浓缩液和透过液可以分开处理,易于资源化,并且有利于染料废水的后继处理,是高浓度高含盐染料废水的一种有效处理方法。  相似文献   

16.
微滤膜法饮用水处理工艺中膜污染控制的研究   总被引:1,自引:1,他引:0  
采用150 m3/d的微滤膜法饮用水处理中试研究了膜污染的控制方法,包括反冲洗、混凝预处理以及在线的通量维护措施--EFM(Enhance Flux Maintenance).结果表明,单独采用水反冲洗时,膜比通量的恢复效果较差,采用气水联合反冲洗时效果明显好转,膜污染速率降低为原来的44%.混凝预处理能够很好地控制膜污染,其主要作用在于降低滤饼层阻力和减轻不可逆膜污染.在研究的范围内,混凝剂投加量越高,对膜污染的控制作用越好.EFM能够阶段性地去除膜污染,有效地恢复膜比通量,因而能够显著地延长化学清洗周期,减少化学清洗频率.  相似文献   

17.
以电导率为分质指标,对纱线筒染废水进行“清浊分质”收集,并对收集到的轻废水进行接触氧化、超滤、反渗透处理;对重废水进行水解酸化、接触氧化、混凝沉淀处理,最后对轻废水减缓膜污染方面进行优势分析。结果表明:轻废水经处理后,ρ( COD )<17 mg/L、色度1倍、ρ( Fe3+)≤0.1 mg/L、ρ( Mn)=0.05~0.09 mg/L、硬度为50~80 mg/L,水质优于印染用水要求,并且能够减缓膜系统污染速率;重废水经处理后,ρ( COD )<50 mg/L、ρ( NH3-N )=1.71~2.93 mg/L、色度小于50倍,满足重点工业行业废水排放要求;表明采用以电导率为指标的废水分质收集与处理方法,自动化程度高、分质准确,有效缓解了后续处理负荷,减缓了膜污染,提高了废水回用率。  相似文献   

18.
The effect of residual ozone on reducing the membrane fouling was investigated using ozone resisting microfiltration membrane. It was found out that the fouling was reduced effectively by maintaining residual ozone in the membrane module. To clarify the reason why the residual ozone reduces the membrane fouling, research was focused on the molecular degradation reaction and particle destabilization reaction induced by residual ozone. The major reason of membrane fouling reduction was attributed to the reduction of reversible resistance induced by the cake layer. The reversible resistance was reduced due to degradation of organic substances in the cake layer. In addition to degradation reaction, the increase of fouling particle size due to residual ozone in the cake layer is another important process for fouling reduction. This effect has been referred to as ozone-induced destabilization reaction. The calcium present in the raw water influenced this reaction. The increase of fouling particles size improves the filterability through the cake layer and backwashing efficiency.  相似文献   

19.
现场孔隙水压力的变化过程能反映地基加固过程中有效应力的发展,现场孔隙水压力的监测是真空预压加固软土地基的重要监测内容之一。通过现场孔隙水压力监测资料, 用曼德尔效应解释了真空预压加固吹填淤泥前期出现孔隙水压力增大的现象,分析了真空预压加固吹填淤泥地基出现曼德尔效应的原因,结果表明,在真空预压加固吹填淤泥地基时曼德尔效应的持续时间沿深度逐渐缩短。综合考虑土的固结状态、负压的传递及工程所处环境表明,真空预压加固吹填淤泥时,孔隙水压力的变化受吹填土的欠固结程度、负压的传递和膜上覆水压力等因素综合影响。  相似文献   

20.
An automatic backflush pre-filter used for pre-treatment for secondary wastewater re-use was evaluated and optimised at two different mesh sizes over an 18 month period. The filter was initially run with a 500 microm rating mesh size, as recommended by the supplier of the downstream membrane filtration process, and then at 100 microm to investigate any change in water quality produced and associated improved membrane performance. With the 500 microm mesh in place, the filter fouling rate was low and a backflush was initiated every 3.5 h. For the 100 microm mesh the fouling rate was extremely rapid. Fouling was found to be caused by reverse side blockage of the pre-filter due to biofilm growth, and not by improved solids capture; there was no improvement in water quality with the smaller mesh size, since particle unloading from the biofilm took place. The pre-filter fouling rate was found to be related to turbidity. At a turbidity of 5 NTU the filter backflushed around 200 times per day, while at 10 NTU this increased to over 300 times. Further analysis enabled the backflush water volume to be decreased by reducing the backflush duration and increasing the backflush cycle time (i.e. the time between backflushes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号