首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stimulation of platelets by collagen leads to activation of a tyrosine kinase cascade resulting in secretion and aggregation. We have recently shown that this pathway involves rapid tyrosine phosphorylation of an Fc receptor gamma chain, which contains an immunoreceptor tyrosine-based activation motif (ITAM), enabling interaction with the tandem SH2 domains of the tyrosine kinase Syk. Activation of Syk lies upstream of tyrosine phosphorylation of phospholipase Cgamma2. In the present study we sought to test directly the role of the ITAM/Syk interaction and the role of the Src-related kinases in collagen receptor signaling using mouse megakaryocytes. We demonstrate that the calcium-mobilizing action of a collagen-related peptide (CRP) is kinase-dependent, inhibited by the microinjection of the tandem SH2 domains of Syk and abolished in Syk-deficient mice. Furthermore, the CRP response is abolished by the Src family kinase inhibitor PP1 and inhibited in Fyn-deficient mice. In contrast, the calcium response to the G-protein-linked receptor agonist thrombin is not significantly altered under these conditions. These results provide direct evidence of the functional importance of Fyn and Syk in collagen receptor signaling and support the megakaryocyte as a model for the study of proteins involved in this pathway.  相似文献   

3.
The Syk protein tyrosine kinase is an essential component of the B cell Ag receptor signaling pathway. Syk is phosphorylated on tyrosine following B cell activation. However, the sites that are modified and the kinases responsible for these modifications have yet to be determined. To approach this problem, we used a mapping strategy based on the electrophoretic separation of peptides on alkaline polyacrylamide gels to identify the tryptic phosphopeptides derived from metabolically labeled Syk. In this work, we report that Syk from activated B cells is phosphorylated principally on six tyrosines: one located between the tandem SH2 domains (Tyr130); three in the linker region (Tyr317, Tyr342, and Tyr346); and two in the catalytic domain (Tyr519 and Tyr520). The linker region sites are the primary targets of the Src family protein tyrosine kinase, Lyn, and include a site that negatively (Tyr317) regulates receptor signaling. Efficient phosphorylation of the catalytic domain and inter-SH2 domain tyrosines is catalyzed primarily by Syk itself, but only occurs to an appreciable extent in cells that express Lyn. We propose that these sites are phosphorylated following the binding of Syk to immunoreceptor tyrosine-based activation motif.  相似文献   

4.
Syk, a nonreceptor protein-tyrosine kinase, is activated by both oxidative and osmotic stress and plays different roles in the transduction of stress signals. In this study, the regulation of oxidative and osmotic stress induced Syk activation was investigated utilizing Syk-negative DT40 cells, expressing various Syk mutants. Phosphorylation of Y518Y519 was demonstrated to be required for both oxidative and osmotic stress induced Syk activation. Syk activation by these two types of stress stimuli was a combination of both autophosphorylation and the activities of additional tyrosine kinases. Oxidative stress induced Syk tyrosine phosphorylation was almost completely attributed to autophosphorylation, whereas other tyrosine kinases were largely responsible for osmotic stress induced Syk tyrosine phosphorylation. Moreover, the Src homology 2 (SH2) domains of Syk differentially regulated Syk activation. Both mSH2(N) Syk and mSH2(C) Syk, in which the phosphotyrosine-dependent binding motif within the SH2 domains contained point mutations, showed a significantly higher activity than that observed in wild-type Syk, following osmotic stress treatment. In comparison, in response to oxidative stress, only mSH2(N) Syk demonstrated a stronger activation than wild-type Syk. Therefore, differential activation and regulation of Syk may give an insight into the distinctive functions of Syk in oxidative and osmotic stress signaling.  相似文献   

5.
pp72syk is essential for development and function of several hematopoietic cells, and it becomes activated through tandem SH2 interaction with ITAM motifs in immune response receptors. Since Syk is also activated through integrins, which do not contain ITAMs, a CHO cell model system was used to study Syk activation by the platelet integrin, alpha IIb beta 3. As in platelets, Syk underwent tyrosine phosphorylation and activation during CHO cell adhesion to alpha IIb beta 3 ligands, including fibrinogen. This involved Syk autophosphorylation and the tyrosine kinase activity of Src, and it exhibited two novel features. Firstly, unlike alpha IIb beta 3-mediated activation of pp125FAK, Syk activation could be triggered by the binding of soluble fibrinogen and abolished by truncation of the alpha IIb or beta 3 cytoplasmic tail, and it was resistant to inhibition by cytochalasin D. Secondly, it did not require phosphorylated ITAMs since it was unaffected by disruption of an ITAM-interaction motif in the SH2(C) domain of Syk or by simultaneous overexpression of the tandem SH2 domains. These studies demonstrate that Syk is a proximal component in alpha IIb beta 3 signaling and is regulated as a consequence of intimate functional relationships with the alpha IIb beta 3 cytoplasmic tails and with Src or a closely related kinase. Furthermore, there are fundamental differences in the activation of Syk by alpha IIb beta 3 and immune response receptors, suggesting a unique role for integrins in Syk function.  相似文献   

6.
SHP-1 is an SH2-containing cytoplasmic tyrosine phosphatase that is widely distributed in cells of the hematopoietic system. SHP-1 plays an important role in the signal transduction of many cytokine receptors, including the receptor for erythropoietin, by associating via its SH2 domains to the receptors and dephosphorylating key substrates. Recent studies have suggested that SHP-1 regulates the function of Jak family tyrosine kinases, as shown by its constitutive association with the Tyk2 kinase and the hyperphosphorylation of Jak kinases in the motheaten cells that lack functional SHP-1. We have examined the interactions of SHP-1 with two tyrosine kinases activated during engagement of the erythropoietin receptor, the Janus family kinase Jak-2 and the c-fps/fes kinase. Immunoblotting studies with extracts from mouse hematopoietic cells demonstrated that Jak2, but not c-fes, was present in anti-SHP-1 immunoprecipitates, suggesting that SHP-1 selectively associates with Jak2 in vivo. Consistent with this, when SHP-1 was coexpressed with these kinases in Cos-7 cells, it associated with and dephosphorylated Jak2 but not c-fes. Transient cotransfection of truncated forms of SHP-1 with Jak2 demonstrated that the SHP-1-Jak2 interaction is direct and is mediated by a novel binding activity present in the N terminus of SHP-1, independently of SH2 domain-phosphotyrosine interaction. Such SHP-1-Jak2 interaction resulted in induction of the enzymatic activity of the phosphatase in in vitro protein tyrosine phosphatase assays. Interestingly, association of the SH2n domain of SHP-1 with the tyrosine phosphorylated erythropoietin receptor modestly potentiated but was not essential for SHP-1-mediated dephosphorylation of Jak2 and had no effect on c-fes phosphorylation. These data indicate that the main mechanism for regulation of Jak2 phosphorylation by SHP-1 involves a direct, SH2-independent interaction with Jak2 and suggest the existence of similar mechanisms for other members of the Jak family of kinases. They also suggest that such interactions may provide one of the mechanisms that control SHP-1 substrate specificity.  相似文献   

7.
The erythropoietin receptor (EpoR) has been previously shown to contain a cytoplasmic C-terminal negative regulatory domain, experimental deletion or mutation of which leads to increased sensitivity of expressing cells to the effects erythropoietin (Epo). We have studied a naturally occurring C-terminal truncation mutant of the human EpoR by stably transfecting the growth factor-dependent hematopoietic tissue culture cell line 32D with expression plasmids containing either the wildtype or mutant human EpoR cDNA, thus rendering the cells dependent on Epo for viability and proliferation. In Epo dose-response assays, cells expressing the mutant EpoR displayed hyperresponsiveness to Epo compared with cells expressing comparable numbers of the wild-type EpoR cultured in the presence of fetal bovine serum. We investigated whether enhanced Epo sensitivity of cells expressing the truncated EpoR is associated with alteration in Epo receptor-mediated activation of Stat5, which could have a role in Epo-induced proliferation. Although maximal Stat5 activation in response to a given concentration of Epo was comparable in 32D cells expressing the wild-type or truncated EpoRs, the time course of Epo-induced Stat5 activation was very different. Gel-mobility shift studies revealed the presence of Stat5 DNA-binding activity in nuclear and cytoplasmic extracts of cells expressing the truncated EpoR for a significantly longer time than that observed in similar extracts of cells expressing the wild-type EpoR consistent with decreased rate of inactivation of Stat5 in cells expressing the mutant EpoR. Epo-dependent tyrosine phosphorylation of both Stat5 and Jak2 was also substantially prolonged in cells expressing the truncated EpoR. These results suggest a role for Stat5 in regulation of Epo-mediated cell growth and implicate altered kinetics of Epo-induced Jak2 and Stat5 activation in the pathogenesis of familial erythrocytosis associated with this naturally occurring EpoR gene mutation.  相似文献   

8.
9.
The cloning of the erythropoietin receptor (EpoR) in 1989 has allowed very rapid progress in our understanding of the early intracellular events that may be triggered by erythropoietin (Epo) in erythroid progenitor cells. From studies carried out primarily with cell lines expressing exogenous wild-type and mutant EpoRs, it appears that the activated EpoR is capable of triggering many of the same cascades that are utilized by receptors possessing endogenous tyrosine kinase domains. The major challenge over the next decade lies in seeing if these same signaling pathways are also utilized by normal Epo-responsive erythroid progenitors, discriminating between proliferation and differentiation inducing events in these cells, and determining whether various hematologic disorders can be attributed to aberrations in these signaling pathways.  相似文献   

10.
BACKGROUND: Recruitment of the intracellular tyrosine kinase Syk to activated immune-response receptors is a critical early step in intracellular signaling. In mast cells, Syk specifically associates with doubly phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) that are found within the IgE receptor. The mechanism by which Syk recognizes these motifs is not fully understood. Both Syk SH2 (Src homology 2) domains are required for high-affinity binding to these motifs, but the C-terminal SH2 domain (Syk-C) can function independently and can bind, in isolation, to the tyrosine-phosphorylated IgE receptor in vitro. In order to improve understanding of the cellular function of Syk, we have determined the solution structure of Syk-C complexed with a phosphotyrosine peptide derived from the gamma subunit of the IgE receptor. RESULTS: The Syk-C:peptide structure is compared with liganded structures of both the SH2 domain of Src and the C-terminal SH2 domain of ZAP-70 (the 70 kDa zeta-associated protein). The topologies of these domains are similar, although significant differences occur in the loop regions. In the Syk-C structure, the phosphotyrosine and leucine residues of the peptide ligand interact with pockets on the protein, and the intervening residues are extended. CONCLUSIONS: Syk-C resembles other SH2 domains in its peptide-binding interactions and overall topology, a result that is consistent with its ability to function as an independent SH2 domain in vitro. This result suggests that Syk-C plays a unique role in the intact Syk protein. The determinants of the binding affinity and selectivity of Syk-C may reside in the least-conserved structural elements that comprise the phosphotyrosine- and leucine-binding sites. These structural features can be exploited for the design of Syk-selective SH2 antagonists for the treatment of allergic disorders and asthma.  相似文献   

11.
SH2 domain proteins transmit intracellular signals initiated by activated tyrosine kinase-linked receptors. Recent three-dimensional structures suggest mechanisms by which tandem SH2 domains might confer higher specificity than individual SH2 domains. To test this, binding studies were conducted with tandem domains from the five signaling enzymes: phosphatidylinositol 3-kinase p85, ZAP-70, Syk, SHP-2, and phospholipase C-gamma1. Bisphosphorylated TAMs (tyrosine-based activation motifs) were derived from biologically relevant sites in platelet-derived growth factor, T cell, B cell, and high affinity IgE receptors and the receptor substrates IRS-1 (insulin receptor substrate-1) and SHPS-1/SIRP. Each tandem SH2 domain binds a distinct TAM corresponding to its appropriate biological partner with highest affinity (0.5-3.0 nM). Alternative TAMs bind the tandem SH2 domains with 1,000- to >10,000-fold lower affinity than biologically relevant TAMs. This level of specificity is significantly greater than the approximately 20-50-fold typically seen for individual SH2 domains. We conclude that high biological specificity is conferred by the simultaneous interaction of two SH2 domains in a signaling enzyme with bisphosphorylated TAMs in activated receptors and substrates.  相似文献   

12.
Engagement of immunoreceptors in hemopoietic cells leads to activation of Src family tyrosine kinases as well as Syk or ZAP-70. Current models propose that Src family kinases are critical in immune response signal transduction through their role in phosphorylation of tyrosine residues within immunoreceptor tyrosine activation motifs (ITAMs; which recruit the SH2 domains of Syk or ZAP-70) and by direct phosphorylation of Syk and ZAP-70. Several lines of evidence suggest that Syk may not show the same dependence on activation by Src family kinases as ZAP-70. In this report, we used COS cells transiently transfected with components of the Fc epsilon RI complex (Lyn, Syk, and a chimeric CD8 receptor containing the cytoplasmic domain of the gamma subunit of Fc epsilon RI (CD8-gamma)) to examine the regulation of Syk activity. Syk was activated and phosphorylated in COS cells cotransfected with Lyn; however, in cells expressing CD8-gamma, activation of Syk and phosphorylation of CD8-gamma did not require coexpression of Lyn. Additional experiments indicate that gamma phosphorylation is dependent on Syk kinase activity and is independent of endogenous COS cell kinases. In parallel experiments, ZAP-70 was not activated by cotransfection with CD8-gamma, nor was CD8-gamma phosphorylated when coexpressed with ZAP-70 alone. Taken together, these studies indicate that Syk can be distinguished from ZAP-70 in its ability to be activated by coexpression with an ITAM-containing receptor without coexpression of a Src family kinase, and that Syk is capable of phosphorylating ITAM tyrosines under certain experimental conditions.  相似文献   

13.
14.
15.
16.
17.
The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.  相似文献   

18.
The SH2/SH3 adapters Nck, Grb2 and Crk promote the assembly of signaling complexes by binding to tyrosine phosphorylated proteins using their SH2 domains and to proline-rich sequences on effector molecules using their SH3 domains. FGF, which activates a receptor tyrosine kinase, induces mesoderm formation in Xenopus embryos through activation of the Ras/Raf/MAPK signaling pathway. We present evidence that dominant-negative mutants of Nck and Grb2, but not Crk1, can inhibit mesoderm-specific gene induction by eFGF in Xenopus animal cap explants. We also show that dominant-negative mutants of Grb2 and Nck can inhibit eFGF-induced Erk1 activation in Xenopus animal caps, and that targeting the first two SH3 domains of Nck to the membrane can activate Erk1 in the absence of eFGF. Furthermore, combinations of the dominant-negative Grb2 mutants with the inhibitory Nck mutant synergistically inhibited Erk1 activation by eFGF in Xenopus animal caps, suggesting that the dominant-negative Nck and Grb2 mutants inhibit Erk1 activation by binding to different proteins. By contrast only Grb2 mutants could inhibit eFGF-induced Erk1 activation in human 293 cells, demonstrating diversity in the specific mechanisms of signaling from FGF to MAP kinases in different cells.  相似文献   

19.
20.
Syk tyrosine kinase required for mouse viability and B-cell development   总被引:1,自引:0,他引:1  
The Syk cytoplasmic protein-tyrosine kinase has two amino-terminal SH2 domains and a carboxy-terminal catalytic domain. Syk, and its close relative ZAP-70, are apparently pivotal in coupling antigen- and Fc-receptors to downstream signalling events. Syk associates with activated Fc receptors, the T cell receptor complex and the B-cell antigen-receptor complex (BCR) in immature and mature B lymphocytes. On receptor activation, the tandem SH2 domains of Syk bind dual phosphotyrosine sites in the conserved ITAM motifs of receptor signalling chains, such as the immunoglobulin alpha and beta-chains of the BCR, leading to Syk activation. Here we have investigated Syk function in vivo by generating a mouse strain with a targeted mutation in the syk gene. Homozygous syk mutants suffered severe haemorrhaging as embryos and died perinatally, indicating that Syk has a critical role in maintaining vascular integrity or in wound healing during embryogenesis. Analysis of syk-/- lymphoid cells showed that the syk mutation impaired the differentiation of B-lineage cells, apparently by disrupting signalling from the pre-BCR complex and thereby preventing the clonal expansion, and further maturation, of pre-B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号