首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Nanometer-sized Pt, Rh, and bimetallic Pt-Rh particles can be deposited on surface of phenylacetic acid functionalized single-walled carbon nanotubes (SWCNTs) by a microemulsion method. The SWCNT-supported metallic nanoparticles show much greater catalytic activities compared with commercially available carbon-supported Pt and Rh catalysts for hydrogenation of neat benzene under mild experimental conditions. The bimetallic Pt-Rh nanoparticle catalyst synthesized by this method shows an enhanced activity relative to individual SWCNT-supported Pt and Rh nanoparticle catalysts. The SWCNT-supported metal nanoparticle catalysts can be recycled and reused at least five times without losing their activity. The hydrogenation reactions performed under our experimental conditions would not affect the pi-pi stacking holding phenylacetic acid on SWCNT surface.  相似文献   

2.
Recent breakthroughs in synthesis in nanoscience have achieved control of size and composition of nanoparticles that are relevant for catalyst design. Here, we show that the catalytic activity of CO oxidation by Rh/Pt bimetallic nanoparticles can be changed by varying the composition at a constant size (9+/-1 nm). Two-dimensional Rh/Pt bimetallic nanoparticle arrays were formed on a silicon surface via the Langmuir-Blodgett technique. Composition analysis with X-ray photoelectron spectroscopy agrees with the reaction stoichiometry of Rh/(Pt+Rh). CO oxidation rates that exhibit a 20-fold increase from pure Pt to pure Rh show a nonlinear increase with surface composition of the bimetallic nanoparticles that is consistent with the surface segregation of Pt. The results demonstrate the possibility of controlling catalytic activity in metal nanoparticle-oxide systems via tuning the composition of nanoparticles with potential applications for nanoscale design of industrial catalysts.  相似文献   

3.
Carbon nanotube-supported platinum nanoparticles with a 5-15 nm diameter size range can be synthesized by hydrogen reduction of platinum(ll) acetylacetonate in methanol modified supercritical carbon dioxide. X-ray photoelectron spectroscopy and X-ray diffraction spectra indicate that the carbon nanotubes contain zero-valent platinum metal and high-resolution transmission electron microscopy images show that the visible lattice fringes of platinum nanoparticles are crystallites. Carbon nanotubes synthesized with 25% by weight of platinum nanoparticles exhibit a higher activity for hydrogenation of benzene compared with a commercial carbon black platinum catalyst. The carbon nanotube-supported platinum nanocatalyst can be reused at least six times for the hydrogenation reaction without losing activity. The carbon nanotube-supported platinum nanoparticles are also highly active for electrochemical oxidation of methanol and for reduction of oxygen suggesting their potential use as a new electrocatalyst for proton exchange membrane fuel cell applications.  相似文献   

4.
A simple and green method of depositing monometallic (Ru, Rh, Pd) and bimetallic nanoparticles (Ru-Rh, Ru-Pd and Rh-Pd) on an ordered mesoporous silica support (MCM-41) in supercritical carbon dioxide (scCO2) is described. Metal acetylacetonates were used in the experiments as CO2-soluble metal precursors. Suitable temperature and pressure conditions for synthesizing each kind of nanoparticles were applied in this study. The characterizations of these nanocomposites were performed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). The nanoparticles had average sizes varying from 2 nm to 8 nm. The Ru nanoparticles were clearly shown to be inside the mesopores of MCM-41 from the TEM image. These nanocomposites used as catalysts for hydrogenation was demonstrated. The efficiency of the scCO2 prepared Ru/MCM-41 catalyst was nearly 8 times than that of a Ru/MCM-41 catalyst prepared by conventional impregnation method.  相似文献   

5.
Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles   总被引:8,自引:0,他引:8  
This paper examined the potential of using Pd/Fe bimetallic nanoparticles to dechlorinate chlorinated methanes including dichloromethane (DCM), chloroform (CF) and carbon tetrachloride (CT). Pd/Fe bimetallic nanoparticles were prepared by chemical precipitation method in liquid phase and characterized in terms of specific surface area (BET), size (TEM), morphology (SEM), and structural feature (XRD). With diameters on the order of 30-50 nm, the Pd/Fe bimetallic nanoparticles presented obvious activity, and were suited to efficient catalytic dechlorination of chlorinated methanes. The effects of some important reaction parameters, such as Pd loading (weight ratio of Pd to Fe), Pd/Fe addition (Pd/Fe bimetallic nanoparticles to solution ratio) and initial pH value, on dechlorination efficiency were sequentially studied. It was found that the maximum dechlorination efficiency was obtained for 0.2 wt% Pd loading. The dechlorination efficiency was observed to increase with increasing Pd/Fe addition. The optimal pH value for dechlorination reaction of chlorinated methanes was about 7. Kinetics of chlorinated methane dechlorination in the catalytic reductive system of Pd/Fe bimetallic particles were investigated. The dechlorination reaction complied with pseudo-first-order kinetics.  相似文献   

6.
Palladium nanoparticles (NPs) were successfully synthesized via a rapid and facile microwave route in HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid) buffer solution. The shape- and size-controlled Pd nanoparticles could be obtained by one-step method without dependence of seed-mediated growth. The capping agent plays a key role in the formation of Pd NPs with different shape and size, which could be tuned by varying capping agents such as polyvinylpyrrolidone (PVP), cetyltrimethylammonium bromide (CTAB), sodium citrate (Na3(cit)) and potassium bromide (KBr). The size-dependent catalytic activities of the obtained Pd NPs for Suzuki coupling reaction were also investigated. It demonstrated that the catalytic activity of Pd NPs was enhanced regularly with the decrease of particle size. Pd NPs less than 10 nm exhibited better catalytic activities for Suzuki reaction than the commercial Pd/C catalyst. Pd/MWCNTs and Pd/SBA-15 nanocomposites were also prepared by a facile method and afforded good catalytic activity and reusability. This "green" synthetic protocol could be used as a general method for the rapid synthesis of transition metal nanoparticles.  相似文献   

7.
以甲烷为碳源,co-Mo/MgO为催化剂,通过气相化学沉积制备了直径均匀的多壁碳纳米管(MWC-NTs).采用溶胶-凝胶法所制双金属催化剂的组成为Co∶Mo∶MgO=5∶20∶75(质量比).热重分析表明多壁碳纳米管产率高达313.67%.催化剂对于多壁碳纳米管生长的选择性是91.17%(其余为无定形碳).透射电子显微镜分析显示:催化剂七生长的MWCNTs平均直径为6.2±0.5nm(平均±标准偏差).通过稀酸的简单纯化处理,纯化样品的催化剂残存率降至0.72%.  相似文献   

8.
An attempt is made to improve the catalytic nitrate reduction on Pd/CeO(2) catalysts by the addition of a second metal. The influence of the second metal such as Sn, In and Ag on the Pd/CeO(2) for nitrate reduction is explored. The second metal is introduced over monometallic Pd/CeO(2) by a redox reaction. Pd/CeO(2) is more active than the bimetallic catalysts under pure hydrogen flow. Whereas in presence of CO(2) the monometallic Pd/CeO(2) is inactive for nitrate reduction, bimetallic catalysts are found to be more active than under pure hydrogen flow and also than the monometallic catalyst with a low selectivity towards ammonium ions, undesired product of the reaction. The Pd-Sn/CeO(2) catalyst is comparatively the most suited for nitrate reduction.  相似文献   

9.
《Materials Letters》2007,61(8-9):1805-1808
Magnetic multi-walled carbon nanotube (MWCNT) composites were obtained by decoration of metal oxide nanoparticles on or in carbon nanotubes. The method involved the dispersion of the carbon nanotubes in iron pentacarbonyl Fe(CO)5 followed by vacuum thermolysis and subsequent oxidation. The magnetic iron oxide particle deposition was always homogeneous and could be controlled selectively on the outer, inner, or both surfaces of MWCNTs by using different MWCNTs. Since the hollow channels remained intact, these MWCNT based composites could find special applications in cellular delivery systems.  相似文献   

10.
Supported bimetallic nanoparticles (NPs) with ultrasmall sizes and homogeneous alloying are attractive for catalysis. However, facile synthesis of this type of material remains very challenging. Here, the aerosol drying impregnation method for rapid, scalable, and general synthesis of silica-supported bimetallic NPs is proposed. The method relies on aerosol spray drying to promote the mixing and dispersing of binary metal precursors on SiO2. It is capable of controlling the composition and size of bimetallic NPs and avoids the use of expensive metal complex salts and complicated experiment procedures. Twelve permutations combining a noble metal (Pd, Ru, and Pt) and a base one (Fe, Co, Ni, and Cu) with ultrasmall sizes (1.4–2.2 nm in average size), uniform dispersion, and good alloying are synthesized. Interesting activity and selectivity trends in catalytic semihydrogenation of phenylacetylene over the supported Pd-based NPs can be observed. The silica-supported PdNi NPs deliver both high activity and styrene selectivity. Spectroscopic and density functional theory calculation results reveal the improved chemoselectivity originated from the suitably down-shifted d-band center of the PdNi NPs inducing an increased energy barrier for overhydrogenation and a weakened styrene adsorption.  相似文献   

11.
In the present study, the catalytic partial oxidation of methane (CPOM) over various active metals supported on CeO2 (M/CeO2, M = Ir, Ni, Pd, Pt, Rh and Ru) has been investigated. The catalysts were characterized by X-ray diffraction (XRD), BET surface area, H2-temperature programmed reduction (H2-TPR), CO chemisorption and transmission electron microscope (TEM) analysis. Ir/CeO2 catalysts showed higher BET surface area, higher metal dispersion, small active metal nano-particles (approximately 3 nm) than compared to other M/CeO2 catalysts. The catalytic tests were carried out in a fixed R(mix) ratio of 2 (CH4/O2) in a fixed-bed reactor, operating isothermally at atmospheric pressure. From time-on-stream analysis at 700 degrees C for 12 h, a high and stable catalytic activity has been observed for Ir/CeO2 catalysts. TEM analysis of the spent catalysts showed that the decrease in the catalytic activity of Ni/CeO2 and Pd/CeO2 catalysts is due to carbon formation whereas no carbon formation has been observed for Ir/CeO2 catalysts.  相似文献   

12.
Achieving an improved understanding of catalyst properties, with ability to predict new catalytic materials, is key to overcoming the inherent limitations of metal oxide based gas sensors associated with rather low sensitivity and selectivity, particularly under highly humid conditions. This study introduces newly designed bimetallic nanoparticles (NPs) employing bimetallic Pt‐based NPs (PtM, where M = Pd, Rh, and Ni) via a protein encapsulating route supported on mesoporous WO3 nanofibers. These structures demonstrate unprecedented sensing performance for detecting target biomarkers (even at p.p.b. levels) in highly humid exhaled breath. Sensor arrays are further employed to enable pattern recognition capable of discriminating between simulated biomarkers and controlled breath. The results provide a new class of multicomponent catalytic materials, demonstrating potential for achieving reliable breath analysis sensing.  相似文献   

13.
Sintering resistant noble metal nanoparticles are critical to the development of advanced catalysts with high activity and stability. Herein, we reported the construction of highly dispersed Pd nanoparticles loaded at the inner wall of ZrO2 hollow spheres (Pd@HS-ZrO2), which shows improved activity and thermal stability over references in the Pd-ZrO2 (catalyst-support) system. Even after 800 °C high temperature calcination, the Pd nanoparticles and ZrO2 hollow spheres did not undergo morphological changes. The Pd@HS-ZrO2 manifests batter catalytic activity and thermal stability than the counterpart Pd/ZrO2 catalysts. In comparison to Pd/ZrO2-800, Pd@ZrO2-800 exhibits a 25°C reduction in the temperature required for complete conversion of CO. The enhanced catalytic activity and thermal stability of Pd@HS-ZrO2 can be attributed to the nanoconfinement effect offered by the 10 nm wall thickness of the ZrO2 hollow spheres, which suppresses the coarsening of the Pd nanoparticles (active center for catalysis).  相似文献   

14.
Mazumder V  Chi M  Mankin MN  Liu Y  Metin Ö  Sun D  More KL  Sun S 《Nano letters》2012,12(2):1102-1106
Monodisperse CoPd nanoparticles (NPs) were synthesized and studied for catalytic formic acid (HCOOH) oxidation (FAO). The NPs were prepared by coreduction of Co(acac)(2) (acac = acetylacetonate) and PdBr(2) at 260 °C in oleylamine and trioctylphosphine, and their sizes (5-12 nm) and compositions (Co(10)Pd(90) to Co(60)Pd(40)) were controlled by heating ramp rate, metal salt concentration, or metal molar ratios. The 8 nm CoPd NPs were activated for HCOOH oxidation by a simple ethanol wash. In 0.1 M HClO(4) and 2 M HCOOH solution, their catalytic activities followed the trend of Co(50)Pd(50) > Co(60)Pd(40) > Co(10)Pd(90) > Pd. The Co(50)Pd(50) NPs had an oxidation peak at 0.4 V with a peak current density of 774 A/g(Pd). As a comparison, commercial Pd catalysts showed an oxidation peak at 0.75 V with peak current density of only 254 A/g(Pd). The synthesis procedure could also be extended to prepare CuPd NPs when Co(acac)(2) was replaced by Cu(ac)(2) (ac = acetate) in an otherwise identical condition. The CuPd NPs were less active catalysts than CoPd or even Pd for FAO in HClO(4) solution. The synthesis provides a general approach to Pd-based bimetallic NPs and will enable further investigation of Pd-based alloy NPs for electro-oxidation and other catalytic reactions.  相似文献   

15.
Colloidal suspensions of bimetallic Au/Pd nanoparticles were prepared by simultaneous reduction of the metal ions from their corresponding chloride salts with polymer (PVP) stabilizer. Thermal properties of water containing bimetallic nanoparticles with different nominal compositions (Au/Pd = 12/1, 5/1, 1/1, 1/5) were measured using the mode mismatched dual-beam thermal lens technique to determine the effect of particle composition on the thermal diffusivity of the nanofluids. The characteristic time constant of the transient thermal lens was estimated by fitting the experimental data to the theoretical expression for transient thermal lens. The thermal diffusivity of the nanofluids (water, containing Au/Pd bimetallic nanoparticles) is seen to be strongly dependent on the composition of the particles. The maximum diffusivity was achieved for the nanoparticles with highest Au/Pd molar ratio. A possible mechanism for such high thermal diffusivity of the nanofluids with bimetallic particles is given. UV-Vis spectroscopy, TEM and high-resolution electron microscopy (HREM) techniques were used to characterize the Au/Pd bimetallic nanoparticles.  相似文献   

16.
We demonstrate a facile hydrothermal one-pot synthesis method for producing single crystalline mesoporous PtPd bimetallic nanopartides with a hollow interior and porous surface structure in the presence of Br-and I-ions.The formation process analysis indicated that the coexistence of Br-and I-ions is responsible for the formation of the novel bimetallic nanoparticles.The changes in the reduction potential of Pt and Pd metal ions achieved by the coordination with different halide ions resulted in the formation of hollow interiors as a galvanic reaction between Pd2+ and Pt4+ ions occurred.In addition,the size of the mesoporous PtPd nanoparticles can be well controlled by slightly changing the amount of I-ions used.The electrochemical tests indicated that the assynthesized single crystalline mesoporous PtPd hollow nanoparticles exhibited enhanced catalytic properties toward methanol and ethanol oxidation reactions as compared with the commercial Pt black and Pt/C materials.  相似文献   

17.
Porous and single crystalline ZnO nanosheets, which were synthesized by annealing hydrozincite Zn(5)(CO(3))(2)(OH)(6) nanoplates produced with a water/ethylene glycol solvothermal method, are used as building blocks to construct functional Pd-ZnO nanoarchitectures together with Pd nanoparticles based on a self-assembly approach. Chemical sensing performances of the ZnO nanosheets were investigated carefully before and after their surface modification with Pd nanoparticles. It was found that the chemical sensors made with porous ZnO nanosheets exhibit high selectivity and quick response for detecting acetone, because of the 2D ZnO nanocrystals exposed in (100) facets at high percentage. The performances of the acetone sensors can be further improved dramatically, after the surfaces of ZnO nanosheets are modified with Pd nanoparticles. Novel acetone sensors with enhanced response, selectivity and stability have been fabricated successfully by using nanoarchitectures consisting of ZnO nanosheets and Pd nanoparticles.  相似文献   

18.
Catalytic activities of sonochemically prepared Au-core/Pd-shell-structured bimetallic nanoparticles (NPs) immobilised on TiO2 were evaluated. Comparing with the mixture of monometallic Au and Pd NPs on TiO2, core/shell-immobilised catalysts exhibited higher activities for the partial reduction of nitrobenzene (NB) to aniline (AN), suggesting that the synergistic effect originating from the core/shell structure enhanced the catalytic activities. In the case of high Au/Pd ratios, where the Pd-shell thickness was calculated to be 0.5 nm or lower, infrared spectroscopic measurements of adsorbed CO showed that the Au cores were successfully covered with Pd shells. It was found that a thin Pd shell of one layer or two layers of Pd atoms effectively catalysed the reduction of NB under ambient temperature, whereas the formation of AN was not confirmed on monometallic Au NP-immobilised catalysts.  相似文献   

19.
Fibrous hydroxyapatite (HA)–carbon nanotube composites were synthesized by the catalytic decomposition of acetylene over Fe–Co bimetallic catalysts supported on the fibrous HA. Two forms of fibrous HA (distinct needle-like monocrystals and spherulitic aggregates of needles) were synthesized using a simple precipitation method and loaded with bimetallic catalysts (from 2 up to 20 wt%) by a wet chemical impregnation method. The HA supported catalysts were evaluated for the in situ growth of carbon nanotubes using the catalytic chemical vapor deposition method. The effect of reaction temperature and metal loading on the yield, structural perfection and morphology of the carbon products were investigated using a combination of X-ray diffraction, thermal analysis, Raman spectroscopy and scanning and transmission electron microscopies. The results revealed that both the selection of the growing conditions and the metal loading determine the yield and overall quality of the synthesized carbon nanotubes, which exhibit high graphitization degree when synthesized in high yields.  相似文献   

20.
Supported bimetallic catalysts have become an important class of catalysts in heterogeneous catalysis. Although well-defined bimetallic nanoparticles (BNPs) can be synthesized by seeded-growth in liquid phase, uniform deposition of these BNPs onto porous supports is very challenging. Here, we develop a universal nanoreactor strategy to directly fabricate the PdAu BNPs in the solid support of coral-like nitrogen-doped mesoporous polymer (NMP) with uniform dispersion in a large scale. This strategy is based on coordination chemistry to introduce the high-quality seeds of Pd nanoclusters and the Au ions into the NMP, and thus to be used as a nanoreactor for seeded growth of PdAu BNPs in solid state during thermal reduction. Many other supported Pd-based BNPs (diameters ranging from 2 to 3 nm) have also been successfully synthesized by adoption of this strategy, including PdRu, PdCo, PdNi, PdZn, PdAg and PdCu BNPs. As an example, the as-synthesized Pd1Au1/4 sample shows enhanced catalytic performance in formic acid (FA) dehydrogenation compared with the monometallic analogues, indicating the synergistic effect between Pd and Au. In addition, the Pd1Au1/4 product is molded into monolith without any binders due to its coral-like structure. The Pd1Au1/4 monolith shows considerable activity in FA dehydrogenation with a turnover frequency (TOF) value of 3684 h−1 at 333 K, which is recycled five times without changes in activity. We believe that the nanoreactor strategy provides an effective route to synthesize various supported bimetallic catalysts that have potential for applications in green and sustainable catalytic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号