共查询到20条相似文献,搜索用时 62 毫秒
1.
针对传统均值漂移算法中仅仅利用目标的颜色信息而导致目标模型分辨能力不高的问题,提出了一种基于扩展空间直方图的红外目标均值漂移跟踪方法.首先对空间直方图进行扩展,构建了一种结合目标颜色分布和空间约束关系的联合空间颜色模型,有效提高了目标模型的分辨能力.通过给定目标空间位置和颜色联合概率密度函数,定义目标区域与候选区域概率密度的相似性度量,进而实现了红外目标的准确定位.实验结果表明该算法简单有效,能准确跟踪前视红外目标. 相似文献
2.
视觉运动目标跟踪在军事与民用领域都有广阔的应用前景,由于实际环境的复杂性与运动目标的易变性,视觉运动目标跟踪具有很大的挑战。采用基于颜色分布的核函数直方图,实现了基于均值漂移的跟踪算法,仿真实验表明了这种方法的有效性。 相似文献
3.
提出一种基于Contourlet直方图的目标跟踪算法。对图像先进行Contourlet变换,并利用变换后的Contourlet系数建立Contourlet直方图,将其作为meanshift算法的迭代参数来实现目标跟踪。实验结果表明,本算法具有较好的鲁棒性,能够在遮挡、小目标等情况下实现快速准确的跟踪。 相似文献
4.
针对传统连续自适应均值漂移(CAMshift)跟踪算法在建立目标颜色模型阶段容易包含大量背景颜色信息从而使跟踪效果变差的问题,该文提出一种改进算法。利用混合高斯模型背景法(GMM)将原始图像分割成前景和背景的叠加,在原始图像和背景图像上运动物体所在区域分别建立色调分量直方图,利用背景图像的色调分量直方图计算原始图像中对应色调分量的权值,抑制原始图像中与背景颜色相同的色调,扩大前景与背景颜色的差异性。该方法通过对原始颜色模型中属于背景的色调进行抑制,扩大了目标颜色模型的显著性,提高了跟踪的准确性和稳定性,目标定位的最大中心误差小于20%,能够准确跟踪不发生丢失。 相似文献
5.
改进算法通过计算跟踪窗口颜色直方图的质心来自适应的调整跟踪窗口的尺寸,通过比较跟踪结果和目标的差值确定遮挡情况,并启用粒子滤波算法在整幅图像内搜索目标解决目标的遮挡问题,这种改进算法克服了均值滤波算法不能适应目标尺寸变化和不能解决遮挡问题的缺点.实验证明改进算法具有很强的鲁棒性. 相似文献
6.
基于均值漂移和粒子滤波的红外目标跟踪 总被引:4,自引:1,他引:4
为了提高红外目标跟踪的准确性和稳健性,提出了基于均值漂移(mean shift)和粒子滤波(PF)相结合的红外目标跟踪方法.在PF理论框架下,使用均值漂移为一种迭代模式寻找过程,对随机粒子样本进行重新分配,使粒子向目标状态的最大后验核密度估计方向移动,在均值漂移迭代过程中对样本权值进行更新.红外目标的状态后验概率分布用重新分配的加权随机样本集表示,对随机样本集使用PF算法实现红外目标运动的跟踪.实验结果表明,和一般PF和均值漂移相比,本文方法具有优越性和更强的稳健性. 相似文献
7.
为了提高复杂背景下红外目标跟踪的准确性和鲁棒 性,提出了紧耦合粒子滤波(PF)与均值漂移(mean shift)的红外目标跟踪方法。在PF框 架下,利用一组5参数集(中心横坐标、中心纵坐标、宽度、高度以及倾斜角)作为状 态变量表 征随机的粒子样本;然后使用自适应均值漂移作为一种迭代模式寻找过程,对随机粒子样本 进行重新分配,使粒子向目标 状态的最大后验核密度估计方向移动,同时利用迭代过程中的Bhattacharyya系数对粒子的 权值进行更新;最后利用重新分配 后的加权粒子集合实现对红外目标的跟踪。实现结果表明,与一般的PF相比,本文方法能有 效减少所需粒子数(N=15),进而降 低跟踪耗时;与现有的PF与均值漂移相结合的方法相比,本文方法在耗费时间 仅增加14%的代价上,使跟踪误差大大降低(约 为原误差的1/3至1/4),准确性和鲁棒性得到显著提高;本文方法能够实现在复杂背景下稳 健准确地跟踪红外目标。 相似文献
8.
为了提高自适应均值漂移(CamShift)跟踪方法的跟 踪性能,提出了一种利用色度-微分二维联合特征建立目标模型的 改进CamShift跟踪方法。对每个像素8邻域的色度进行差分计算,最大差分值作为该像素的 微分值,用以 描述像素的相对位置信息和图像的细节信息;根据目标模型的色度-微分二维特征联合直方 图,利用反向投 影获得跟踪图像的色度-微分二维特征联合概率分布图,以减少单独特征建立模型时所产生 的冗余信息的干 扰;利用均值平移方法在跟踪窗内实现目标的定位。对目标尺寸的过大更新加以限制,防止 过多背景信息 干扰目标识别的准确性。仿真实验结果表明,本文方法跟踪性能稳定,当目标与背景相似, 或者背景中出现 与目标相似的干扰区域时,都能实现目标的有效跟踪,提高了CamShift跟踪方法的适 用性,单帧图 像的处理时间小于30ms,满足跟踪系统实时性的设计要求。 相似文献
9.
采用粒子滤波算法解决运动目标跟踪中非线性非高斯问题。将均值漂移算法嵌入到粒子滤波的采样阶段中,通过将每个粒子聚集到所在区域的局部极值,提高了采样粒子的使用效率。当发生目标遮挡时采用改进的粒子滤波算法,当无遮挡时采用均值漂移算法以提高速度。实验结果表明,该方法较传统单一算法具有较强的实时性和鲁棒性,能够有效实现在遮挡场景下的目标跟踪。 相似文献
10.
基于空间直方图的CamShift目标跟踪算法 总被引:1,自引:1,他引:1
为了提高在目标被遮挡及目标颜色发生较大变化情况下CamShift算法跟踪的稳健性,文中在目标建模阶段不仅利用了目标的颜色信息,而且还加入了目标的空间信息,建立了"空间直方图",从而提高算法的精确性及抗干扰能力;同时,依据径向距离理论提出了一种新的模板更新策略,进一步增强了算法的鲁棒性.实验结果证明,改进方法是有效的. 相似文献
11.
针对视觉跟踪系统中常用的模板处理方法很难 适应目标外观和视频背景不断变化的不足,提出一种基于多层字典的自重构 目标跟踪算法。通过构建多层字典,分别从时间和 空间上增强目标描述能力,既可以刻画目标局部细节,又蕴含了目标整体信息;在跟踪过程 中,模板可以利 用多层字典根据前景和背景的复杂性自适应地分裂与分并,分裂出多个跟踪器从不同角度进 行跟踪,有效地 提高定位精度,也可以合并子模板以达到降低系统的计算负荷。定性和定量分析的实验结果 表明,本文算法具 有良好的跟踪精度和运行效率,可以较好地应对变化与遮挡。 相似文献
12.
针对采用单一颜色特征对目标进行跟踪鲁棒性不高的问题,采用了颜色特征和纹理特征两种特征相结合来描述目标的方法,进而把融合后的特征应用到均值偏移跟踪框架中,有效的避免了单一颜色特征在光照变化和背景相似情况下的不稳定问题。实验结果表明该算法提取的目标特征具有较强的鲁棒性,能实现复杂场景下的目标跟踪。 相似文献
13.
基于方向直方图的Mean shift目标跟踪新算法 总被引:1,自引:0,他引:1
Mean shift算法是一种非参数密度估计算法,可以实现快速的最优匹配。为了有效地将Mean shift算法应用到灰度图像中,使用空间分布和纹理信息作为匹配信息,提出了一种基于空间方向直方图的Mean shift跟踪新算法。利用卡尔曼滤波器来获得每帧目标的起始位置,再利用Mean shift算法得到跟踪位置。实验结果证明,该算法在目标运动较快,目标尺度变化的情况下仍能稳定、实时、高效地跟踪目标。 相似文献
14.
针对复杂环境下,均值迁移算法只使用 颜色特征跟踪目标鲁棒性差的问题,提出一种多特征自适应融合的MS目标跟踪算法。算法在 跟踪场景的动态变化过程中,通过选择对目标和背景区分能 力强的特征描述目标,建立多特征 融合目标模型,并设置特征重要性权值。给出了多特征融合目标定位公式。通过 动态评估不同特征在不同跟踪场 景中的可靠性,对特征权值进行动态更新以及多特征自适应融合。依据不同特征的权值给出 一种选择性模板更新机制,以减 轻目标模型的漂移。实验结果表明,提出的算法在复杂场景下,具有更高的鲁棒性和跟踪效 率。 相似文献
15.
16.
17.
针对传统均值漂移算法利用固定核或对称核函数进行目标跟踪时出现目标跟踪丢失或跟踪失败的问题,提出了基于各向异性核函数的自适应带宽均值漂移目标跟踪算法,以提高目标跟踪的准确性、实时性.在符号距离核函数的基础上引入符号距离约束函数,构成各向异性核函数,满足目标外部的区域函数值为零,为目标跟踪提供准确的跟踪窗.依据基于各向异性核函数的均值漂移应用到目标跟踪中需满足跟踪窗内的样本点到中心点的向量权重之和为0的思想,计算各向异性核函数模板的均值漂移窗口中心.利用相似度阈值对前后两帧目标模板的变化情况进行限制,实现各向异性核函数模板的自适应更新及目标的准确实时跟踪.实验结果表明所提出算法的准确性和实时性较高. 相似文献
18.
在经典的Mean-Shift算法中使用颜色直方图来描述目标,而这种颜色直方图中却存在大量空的颜色直方图区间,且没有融入图像的空间信息,在遇到与跟踪目标颜色分布相近的背景或目标时会造成跟踪丢失。针对颜色直方图的不足提出一种分块颜色直方图构建方法以融入空间信息,对得到的分块直方图进行简化,去除空闲的直方图区间。实验中对颜色分布相似的物体发生遮挡进行跟踪试验,并与经典Mean-Shift算法跟踪结果进行对比。实验结果表明,这种新算法能更稳定、准确地跟踪目标。 相似文献
19.
带宽自适应Mean Shift跟踪算法 总被引:2,自引:0,他引:2
提出了一种先进行空间定位再确定目标尺度的两级跟踪算法,有效地解决了mean shift算法对尺度变化的适应问题.该算法首先在当前帧对应位置进行降分辨率处理,并以基于增量试探的mean shift跟踪算法收敛点作为当前帧目标中心位置,进而利用对数极坐标变换的旋转、尺度不变性,对目标和候选目标分别进行对数极坐标映射,并通过求取最大归一化相关函数确定目标的尺度变化.跟踪实验表明,该算法可以有效的提高mean shift跟踪算法空间和尺度定位准确性. 相似文献