首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.  相似文献   

2.
Conventional series resonant converters have researched and applied for high-efficiency power units due to the benefit of its low switching losses. The main problems of series resonant converters are wide frequency variation and high circulating current. Thus, resonant converter is limited at narrow input voltage range and large input capacitor is normally adopted in commercial power units to provide the minimum hold-up time requirement when AC power is off. To overcome these problems, the resonant converter with auxiliary secondary windings are presented in this paper to achieve high voltage gain at low input voltage case such as hold-up time duration when utility power is off. Since the high voltage gain is used at low input voltage cased, the frequency variation of the proposed converter compared to the conventional resonant converter is reduced. Compared to conventional resonant converter, the hold-up time in the proposed converter is more than 40ms. The larger magnetising inductance of transformer is used to reduce the circulating current losses. Finally, a laboratory prototype is constructed and experiments are provided to verify the converter performance.  相似文献   

3.
This paper presents a new single-stage three-level resonant power factor correction ac-dc converter suitable for high power applications (in the order of multiple kilowatts) with a universal input voltage range (90–265 Vrms). The proposed topology integrates the boost input power factor preregulator with a half-bridge three-level resonant dc-dc converter. The converter operation is controlled by means of a combination of phase-shift and variable frequency control. The phase-shift between the switch gate pulses is used to provide the required input current shaping and to regulate the dc-bus voltage to a set reference value for all loading conditions, whereas, variable frequency control is used to tightly regulate the output voltage. An auxiliary circuit is used in order to balance the voltage across the two dc-bus capacitors. Zero voltage switching (ZVS) is also achieved for a wide range of loading and input voltage by having a lagging resonant current in addition to the flowing of the boost inductor current through the body diodes of the upper pair of switches in the free wheeling mode. The resulting circuit, therefore, has high conversion efficiency and lower component stresses making it suitable for high power, wide input voltage range applications. The effectiveness of the proposed converter is verified by analysis, simulation, and experimental results.   相似文献   

4.
The two-inductor boost converter has been previously presented in a zero-voltage switching (ZVS) form where the transformer leakage inductance and the MOSFET output capacitance can be utilized as part of the resonant elements. In many applications, such as maximum power point tracking (MPPT) in grid interactive photovoltaic systems, the resonant two-inductor boost converter is required to operate with variable input output voltage ratios. This paper studies the variable frequency operation of the ZVS two-inductor boost converter to secure an adjustable output voltage range while maintaining the resonant switching transitions. The design method of the resonant converter is thoroughly investigated and explicit control functions relating the circuit timing factors and the voltage gain for a 200-W converter are established. The converter has an input voltage of 20V and is able to produce a variable output voltage from 169V to 340V while retaining ZVS with a frequency variation of 1MHz to 407kHz. Five sets of theoretical, simulation and experimental waveforms are provided for the selected operating points over the variable load range at the end of the paper and they agree reasonably well. The converter has achieved part load efficiencies above 92% and an efficiency of 89.6% at the maximum power of 200W  相似文献   

5.
This paper presents a new single-stage power factor correction ac/dc converter based on a three-level half-bridge resonant converter topology. The proposed circuit integrates the operation of the boost power factor preregulator and the three-level resonant dc/dc converter. A variable-frequency asymmetrical pulsewidth modulation controller is proposed for this converter. This control technique is based on two integrated control loops: the output voltage is regulated by controlling the switching frequency of the resonant converter, whereas the dc-bus voltage and input current are regulated by means of duty cycle control of the boost part of the converter. This provides a regulated output voltage and a nearly constant dc-bus voltage regardless of the loading condition; this, in turn, allows using smaller switches and consequently having a lower on resistance helping to reduce conduction losses. Zero-voltage switching is also achieved for a wide range of loading and input voltage. The resulting circuit, therefore, has high conversion efficiency making it suitable for high-power wide-input-voltage-range applications. The effectiveness of this method is verified on a 2.3-kW 48-V converter with input voltage (90–265 Vrms).   相似文献   

6.
DC-to-DC resonant power converters have been the subject of much attention recently. These power converters have the potential to provide high-performance conversion without some of the problems associated with classical pulse-width modulation (PWM)-based converters, thus allowing for smaller, lighter power supplies. However, in order to achieve this, a suitable control circuit, capable of maintaining the desired output voltage under different operating conditions, is required. In the past, small-signal models obtained around the nominal operating points were used to design controllers that attempted to keep the output voltage constant in the presence of input perturbations. However, these controllers did not take into account either load or components variations, and thus could lead to instability in the face of component or load changes. Moreover, the prediction of the frequency range for stability was done a posteriori, either experimentally or by a trial-and-error approach. In this paper, the authors use μ-synthesis to design a robust controller for a conventional parallel resonant power converter. In addition to guaranteeing stability for a wide range of load conditions, the proposed controller rejects disturbances at the power converter input while keeping the control input and the settling time within values compatible with a practical implementation. These results are validated by means of detailed nonlinear circuit simulations obtained using PSpice  相似文献   

7.
A new control process for single-stage three-phase buck-boost type AC-DC power converters with high power factor, sinusoidal input currents and adjustable output voltage is proposed. This converter allows variable power factor operation, but this work focus on achieving unity power factor. The proposed control method includes a fast and robust input current controller based on a vectorial sliding mode approach. The active nonlinear control strategy applied to this power converter, allows high quality input currents. Given the comparatively slow dynamics of the DC output voltage, a proportional integral (PI) controller is adopted to regulate the converter output voltage. The voltage controller modulates the amplitudes of the current references, which are sinusoidal and synchronous with the input source voltages. Experimental results from a laboratory prototype show the high power factor and the low harmonic distortion characteristics of the circuit  相似文献   

8.
Two alternatives for the implementation of an isolated DC-DC converter operating with a high output voltage and supplied by an unregulated low input voltage are presented in this paper. The proposed topologies are especially qualified for the implementation of travelling wave tube amplifiers (TWTA) utilized in telecommunication satellite applications due to their low mass and volume and their high-efficiency. The converters studied follow different principles and the main operational aspects of each topology are analyzed. A two-stage structure composed by a regulator connected in series with a ZVS/ZCS isolated DC-DC converter is the first topology proposed. The second topology studied is an isolated single-stage converter that continues being highly efficient even with a large input voltage variation. The experimental results obtained from two prototypes, implemented following the design procedures developed, are presented, verifying experimentally the characteristics and the analysis of the proposed structures. The prototypes are developed for an application requiring an output power of 150 W, a total output voltage of 3.2 kV and an input voltage varying from 26 V to 44 V. The minimum efficiency obtained for both converters operating at the nominal output power, is equal to 93.4% for the two-stage structure and equal to 94.1% for the single-stage converter.  相似文献   

9.
Single-phase single-stage power-factor-corrected converter topologies   总被引:1,自引:0,他引:1  
Single-phase single-stage power-factor-corrected converter topologies are reviewed in this paper. The topologies discussed in the paper are related to ac-dc and ac-ac converters that are classified on the basis of the frequency of the input ac source, the presence of a dc-link capacitor, and the type of control used (resonant or pulsewidth modulation). The general operating principles and strengths and weaknesses of the converters, which the authors have investigated over the last decade, are discussed in detail, and their suitability in practical applications is stated. Considering practical design constraints, it is possible to effectively employ many single-stage converter topologies in a wide range of applications.  相似文献   

10.
Resonant DC-DC converters that are usually operated using frequency modulation to achieve regulation have the disadvantage of wideband frequency modulation. An alternate regulation scheme that uses fixed-frequency pulse width modulation (PWM) is proposed. This control scheme is applied to a series-loaded, series-resonant converter. When operated in a full-bridge configuration and with a variation of PWM that can be described as a phase shift modulation between the two sets of switches, the converter presents low switching stresses. Analytical results presented include VA rating and stresses on critical active and passive components as a function of input voltage variation. A 200 kHz, 700 W, 48 V output offline converter was realized using this concept, and some experimental results are presented to corroborate the analysis  相似文献   

11.
A new four-switch full-bridge dc-dc converter topology is especially well-suited for power converters operating from high input voltage: it imposes only half of the input voltage across each of the four switches. The two legs of a full-bridge converter are connected in series with each other, across the dc input source, instead of the usual topology in which each leg is connected across the dc source. The topology reduces turn-off switching losses by providing capacitive snubbing of the turn-off voltage transient, and eliminates capacitor-discharge turn-on losses by providing zero-voltage turn-on. (Switching losses are especially important in converters operating at high input voltage because turn-on losses are proportional to the square of the input voltage, and turn-off losses are proportional to the input voltage). The topology is suitable for resonant and nonresonant converters. It adds one bypass capacitor and one commutating inductor to the minimum-topology full-bridge converter (that inductor is already present in many present-day converters, to provide zero-voltage turn-on, or is associated with one or two capacitors to provide resonant operation), and contains a dc-blocking capacitor in series with the output transformer, primary winding, and some nonresonant converters (that capacitor is already present in resonant power converters). The paper gives a theoretical analysis, and experimental data on a 1.5-kW example that was built and tested: 600-Vdc input, 60-Vdc output at up to 25A, and 50-kHz switching frequency. The measured performance agreed well with the theoretical predictions. The measured efficiency was 93.6% at full load, and was a maximum of 95.15% at 44.8% load.  相似文献   

12.
The performance of the parallel resonant power converter and the combination series/parallel resonant power converter (LCC converter) when operated above resonance in a high power factor mode are determined and compared for single phase applications. When the DC voltage applied to the input of these converters is obtained from a single phase rectifier with a small DC link capacitor, a relatively high power factor inherently results, even with no active control of the input line current. This behavior is due to the pulsating nature of the DC link and the inherent capability of the converters to boost voltage during the valleys of the input AC wave. With no active control of the input line current, the power factor depends on the ratio of operating frequency to tank resonant frequency. With active control of the input line current, near-unity power factor and low-input harmonic currents can be obtained  相似文献   

13.
A two-stage, two-wire TRIAC dimmable electronic ballast for fluorescent lamps is presented in this paper. It is constructed by using a flyback converter as the input power factor corrector to supply a half-bridge series-resonant parallel-loaded inverter to ballast the lamp. The flyback converter is operated in discontinuous conduction mode so that the filtered input current profile is the same as the TRIAC-controlled voltage waveform. The switches in the inverter are switched at a constant frequency slightly higher than the resonant frequency of the resonant tank. Based on the constant average input current characteristics of the inverter, the dimming operation is simply achieved by pulsewidth modulation control of the magnitude of the flyback converter output voltage. No synchronization network is required between the input and output stages. In addition, a linear power equalization scheme is developed so that the dc-link voltage (and hence the lamp power) is in a linear relationship with the firing angle of the TRIAC. The average output voltage of the dimmer controls the equalized flyback converter output voltage. Modeling, analysis, and design of the ballast will be described. A prototype was implemented to verify the experimental measurements with the theoretical predictions.  相似文献   

14.
A new soft switching converter is presented for medium power applications. Two full-bridge converters are connected in series at high voltage side in order to limit the voltage stress of power switches at Vin/2. Therefore, power metal–oxide–semiconductor field-effect transistors (MOSFETs) with 600 V voltage rating can be adopted for 1200 V input voltage applications. In order to balance two input split capacitor voltages in every switching cycle, two flying capacitors are connected on the AC side of two full-bridge converters. Phase-shift pulse-width modulation (PS-PWM) is adopted to regulate the output voltage. Based on the resonant behaviour by the output capacitance of MOSFETs and the resonant inductance, active MOSFETs can be turned on under zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. Two full-bridge converters are used in the proposed circuit to share load current and reduce the current stress of passive and active components. The circuit analysis and design example of the prototype circuit are provided in detail and the performance of the proposed converter is verified by the experiments.  相似文献   

15.
This paper presents an improved control technique for the full bridge series, parallel, and series-parallel resonant converters. This control technique combines a self-sustained oscillation mode with a phase shift modulation technique that can significantly reduce the range of frequency variation necessary for obtaining zero voltage switching in the resonant converters. This frequency reduction provides optimized component ratings and operating frequency. A simple and accurate low order mathematical model based on the sampled data technique that fully describes the steady-state, and dynamic performance of the resonant converters, has been developed. A refinement algorithm is developed to enhance the accuracy of the modeling technique and the converter design. The improved converter performance and the feasibility of the developed dynamic model have been investigated using the series-parallel resonant converter topology with a capacitive output filter. Finally, MATLAB numerical solutions, PSIM simulation results, and experimental results are given to highlight the merits of the proposed work.  相似文献   

16.
In this paper, the design of a 1-MHz LLC resonant converter prototype is presented. Aiming to provide an integrated solution of the resonant converter, a half-bridge (HB) power metal oxide semiconductor (MOS) module employing silicon-on-insulator technology has been designed. Such a technology, which is suitable for high-voltage and high-frequency applications, allows enabling HB power MOSFET modules operating up to 3MHz with a rated voltage of 400V. The power device integrates the driving stages of the high-side and low-side switch along with a latch circuit used to implement over-voltage/over-current protection. The module has been designed to be driven by a digital signal processor device, which has been adopted to perform frequency modulation of the resonant converter. By this way, output voltage regulation against variations from light- to full-loaded conditions has been achieved. The issues related to the transformer design of the LLC resonant converter are discussed, too. Owing to the high switching frequency experienced by the converter, 3F4 ferrite cores have been selected for their low magnetic power losses between 0.5 and 3 MHz and core temperatures up to 120degC. The resonant converter has been designed to operate in an input voltage range of 300-400V with an output voltage of 12V and a maximum output power of 120W. Within these design specifications, a performance analysis of the LLC converter has been conducted, comparing the results obtained at the switching frequencies of 500kHz and 1MHz. A suitable model of the LLC resonant converter has been developed to aid the prototype design.  相似文献   

17.
This paper presents asymmetrical pulse-width-modulated (APWM) DC/DC resonant converter topologies that exhibit near-zero switching losses while operating at constant and very high frequencies. The converters include a bridged chopper to convert the DC input voltage to a high-frequency unidirectional AC voltage, which in turn is fed to a high-frequency transformer through a resonant circuit. The bridged chopper has two switches that alternately conduct. The duty cycles of the conduction of the switches are complementary with one another and are varied to control the output voltage. Three resonant circuit configurations suitable for this type of control are presented. Frequency domain analysis of the converter is given, and performance characteristics are presented. Experimental results for a 48-5 V, 30 W converter show an efficiency of 88% at a constant operating frequency of 1 MHz  相似文献   

18.
In this paper, a series resonant converter with pulse-width modulation (PWM) control is presented as an ac voltage regulator module (VRM) for high frequency ac power distribution systems. The proposed topology has close-to-unity rated power factor, low total harmonic distortion in input current, zero voltage switching under all load conditions, low voltage stress of the active switch and high overall efficiency. Simulation and experimental results are presented to prove the performance of the proposed ac VRM converter.  相似文献   

19.
A new device called the variable capacitance device is proposed, and its application to the output voltage regulation of resonant converters is discussed. The new device has an independent input terminal for controlling its capacitance. The converters used are the well-known Schwarz circuit and the buck-type current-resonant converter with a resonant switch. By applying the devices to the capacitors in LC resonant tanks, the resonant converters can be regulated with the switching frequency fixed  相似文献   

20.
针对太阳能光伏及燃料电池等领域电源需要较宽输入电压范围的需求,提出一种通用的具有较宽输入电压范围的软开关电流型DC/DC转换器。该转换器采用了固定频率混合调制设计,可以在所有工作条件下实现半导体器件的软开关工作,并采用电流馈电技术以便适用于低电压高电流的电源。相较于传统转换器,该转换器更为通用,能够实现零电压开关和零电流开关,并且能够在输入电压和负载变化出现较大变化时控制输出电压。实验结果显示,在20-60V输入电压范围内且负载出现变化时,该转换器均表现出良好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号