首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
建立气井井筒压力温度及井下节流温降模型,预测节流前后井筒沿程压力、温度的分布。结合水合物预测模型,对防止水合物生成井下节流工艺进行设计。  相似文献   

2.
准确预测井下节流气井井底压力,是预测气井产能、诊断井筒积液、制定合理排水采气制度的重要基础。通过引入滑脱因子K表征气液两相间滑脱效应,建立了气液两相嘴流压降模型,并将气液两相嘴流压降模型与优选出的No-Slip/H-B管流压降模型进行全井筒耦合,形成井下节流气井全井筒压力预测新方法,并开发出计算软件,可实时定量预测气井全井筒积液高度和井底流压值。评价结果表明,新方法预测井下节流气井井筒流压值与实测值较接近,平均误差为2.87%,满足工程计算精度要求,可以有效指导东胜气田气井积液诊断和动态排水采气分析工作。  相似文献   

3.
分析了正断层地层任意偏离角水平井在裸眼完井和射孔完井两种完井方式下,井筒和孔眼的应力状态,以垂直井地层破裂压力公式为基础,利用替代方法,给出了水平井地层破裂压力的解析公式,并进行了算例研究.结果表明,地层破裂压力与完井方式及偏离角密切相关.由于射孔完井孔眼和裸眼完井井筒的应力状态完全不同,所以,两者破裂压力通常并不相等.不论是裸眼完井还是射孔完井,其破裂压力都是偏离角的单调递增函数.当偏离角为0°时,破裂压力最低;而当偏离角为90°时,破裂压力最高.  相似文献   

4.
水平井筒内与渗流耦合的流动压降计算模型   总被引:44,自引:3,他引:44  
水平井筒内压降对水平井生产动态有较大影响。分析了水平井生产时与渗流耦合的水平井筒内单相变质量流的特性后 ,从水平井筒内流动出发 ,根据质量守恒原理和动量定律导出了裸眼完井和射孔完井的水平井筒内压降计算基本公式 ,并根据势迭加原理导出了油藏内渗流的压力方程。在此基础上 ,建立了石油工程上实用的水平井筒内压降计算新模型 ,给出了实例计算结果  相似文献   

5.
计算气井井筒温度分布的新方法   总被引:14,自引:1,他引:13  
气井井筒的温度分布计算对于气井设计及其动态分析具有重要意义,通过对井筒温度分布的预测,可以提高井筒压力预测的精度。  相似文献   

6.
蛇曲井是一种新型复杂结构井,生产井段存在较大的纵向起伏,井筒流动特征既不同于普通水平管,也不同于水平井.研究了蛇曲井井筒流动特征,对蛇曲井微元段和孔眼段的流动进行了分析,根据质量守恒原理和动量定理,建立了裸眼完井和射孔完井方式下蛇曲井生产井段的井筒压降预测模型.在定产量和定井底流压两种工作制度下,给出了蛇曲井生产井段的压降预测方法.应用所建预测模型和水平井的水平段压降计算模型分别计算了某裸眼完井蛇曲井生产井段的井筒压降,结果表明:蛇曲井生产井段井筒压降不能用常规水平井水平段的压降模型计算,蛇曲井生产井段井筒压降不能忽略.  相似文献   

7.
基于热量传递原理和井筒多相管流理论,建立了彰武地区稠油井产出液沿井筒流动与传热的数学模型,计算了产出液沿井筒的温度分布和压力分布以及产出液的粘度随井筒的变化规律.计算结果表明井筒上部温度较低,不利于原油的流动,采用电加热以后,井筒温度得到了提高,改善了原油的流动性.井筒压力基本上呈线性分布;含水率对产出液温度稍有影响,但幅度不大,含水率越高,产液温度就越高,流体粘度就越低,就越利于油井生产.  相似文献   

8.
以单井开采系统为研究对象,采用温度、压力解耦建模与数值耦合方式,以井口油压为控制条件,通过油嘴控制流量和下游温度,建立井下节流气井的井筒-气藏流动耦合的生产动态预测模型,利用试井解释结果或生产动态历史拟合,预测气井的生产流量、压力变化,同时描述生产过程中的井筒非线性温度剖面、压力剖面,从而全面掌握节流气井的生产动态,并可进一步扩展应用于多相流动和复杂井眼轨迹情况.  相似文献   

9.
射孔完井水平井产能与打开段数和程度密切相关,将油藏动态和水平井多相流联立起来得到水平井的总动态.把油藏中流体的流动作为水平井的流入条件,用多相流模型计算井筒压力分布.同时考虑气液比、粘度变化以及其他相关参数对流动动态的影响,借助计算机编程来模拟计算,以某油田-底水油藏水平井为例,借助数值模拟来优化设计该井射孔完井时的打开程度和射孔位置,以获得较高的产能.  相似文献   

10.
反循环压井井筒温度场计算与分析   总被引:1,自引:0,他引:1  
反循环压井过程中,井筒温度场受环境及压井液物理性质等外部参数影响十分明显。从反循环压井工艺特点出发,以传热学基本理论为基础,通过理论推导,得到反循环压井过程井筒温度场计算模型。对影响反循环压井过程中井筒温度的因素进行分析,结果表明,在压井过程中,泥浆排量、泥浆比热、地温梯度、井深以及压井循环时间和泥浆入口温度对循环过程中井下温度分布的影响较大;调整泥浆排量和泥浆入口温度可以作为调节井筒温度的有效途径。  相似文献   

11.
"电路分析"、"信号与系统"和"数字信号处理"课程是信息和通信工程类专业的重要基础课程,然而,长期以来三门课程的教学各自为政,存在授课内容重复、衔接不合理等诸多问题,因而有必要对原有课程体系教学内容进行优化整合。文章首先阐述了整合的总体思路,其次提出了整合的具体方案,然后分析了整合后课程体系的特点,最后对进一步进行教学改革可能采取的措施进行了讨论。  相似文献   

12.
面对新形势的要求 ,思想政治工作在内容、形式、方法、手段、机制等方面都存在着不相适应的问题。以人为本 ,切实做好思想政治工作的创新工作 ,把党性原则和“人情味”联系起来 ,实现物质力量与精神力量的互相转化 ,是新时期加强和改进思想政治工作的重要方法。  相似文献   

13.
城市文脉即城市文化脉络,它是城市在历史发展过程中的文化集合,是城市独一无二的文化资本.本文以历史文化名城太原的城市文脉作为研究对象,从物化城市形态及非物质传统文化两个角度对历史文化名城太原的城市文脉内涵进行论述,并在此基础上进一步提出了保护及开发太原城市文脉的措施.通过对此研究,以期能够促进太原历史文脉的传承及其合理开发.  相似文献   

14.
VBA与VB应用程序之异同和相互移植   总被引:1,自引:0,他引:1  
介绍了VBA(VisualBasicforApplications)与VB(VisualBasic)之间的异同点,以及VBA与VB的代码对照,并举例说明了两者之间进行相互移植的方法。  相似文献   

15.
面对新形势的要求,思想政治工作在内容、形式、方法、手段、机制等方面都存在着不相适应的问题.以人为本,切实做好思想政治工作的创新工作,把党性原则和"人情味"联系起来,实现物质力量与精神力量的互相转化,是新时期加强和改进思想政治工作的重要方法.  相似文献   

16.
花鸟画和花鸟图案虽然在表现的目的、功能和工具材料上相异,但在表现手法和造型规律上却相互融合。在设计艺术中进行工笔花鸟画教学,应结合专业特点,充分利用它们之间的互融性,将设计艺术中的一些有益因素贯穿到花鸟画教学中,这样不仅丰富和发展了工笔花鸟的表现语言,同时也使花鸟画教学和设计艺术专业相互融合。  相似文献   

17.
泥岩涂抹形成演化与油气运移及封闭   总被引:1,自引:0,他引:1  
泥岩涂抹是断层封闭的主要机制之一,为了建立合理的断层封闭性评价方法,系统研究了泥岩涂抹类型、形成和演化规律.结果表明:泥岩涂抹主要有3种类型:即研磨型、剪切型和注入型.泥岩、页岩、煤层、膏岩、泥质盐岩、碳酸盐岩和粉砂岩均可成为涂抹的原岩,由原岩与周围岩石的强度差异所决定的拉张型叠覆带是泥岩涂抹形成的关键地质因素.叠覆区的几何学特征、断距与泥岩厚度的比率、有效正应力控制着泥岩涂抹的连续性,亚地震断层(断距小于15m)泥岩涂抹连续临界SSF值范围很大,最大可达到50,规模较大的断层(断距大于15m)临界SSF值一般为5~8,有效正应力越大,临界SSF值越大.连续的泥岩涂抹导致断层在盖层段垂向封闭.断层侧向封闭取决于多次涂抹形成断层泥含量,可建立SGR,SSF和CSP与过断层面压力差之间的关系,从而计算断层所能封闭的最大油气柱高度,实现断层侧向封闭性定量评价.  相似文献   

18.
在分析和总结前人对红藻石和蓝藻石研究成果基础上,结合岩石薄片显微镜下观察实例,发现在以往碳酸盐岩颗粒分类中没有红藻石和蓝藻石的合适位置。鉴于红藻石重要的成因意义和造礁作用,有必要明确红藻石的概念和归属。珊瑚藻本身极易钙化,经生物矿化作用最终保存下来的珊瑚藻屑一直放在生物碎屑中,而红藻石是由非固着的珊瑚藻构成的钙质独立结核,因此也可以被划分到生物碎屑中。蓝藻石作为蓝细菌钙化作用的产物,同时鉴于蓝藻石的广泛存在,把钙化蓝细菌形成的核形石命名为蓝藻石,这一重要概念从提出到现在一直被使用。然而蓝绿藻概念已变更为蓝细菌,蓝藻石的形成与藻类无关,显然将其称作蓝菌石更加确切。因此,应将红藻石和蓝藻石分别归为生物碎屑和核形石当中,并用新的术语蓝菌石替代蓝藻石。其意义在于使红藻石和蓝藻石的概念及归属更为规范,并为碳酸盐岩颗粒的深入研究提供有益线索。  相似文献   

19.
由于缺乏深厚的人文背景以及科技哲学和科技美学的指导 ,现代科学和技术越来越陷入自设的困境 .面对现实 ,提出致力于国民素质的全面提高 ,特别是理工、自然科学与人文社科的融合 ,以此促进科技、美学和其他人文学科的联姻 ,唤醒科技的人本意识和社会责任感  相似文献   

20.
介绍了常见天然沸石的结构.性能和应用情况以及对几种典型沸石类分子筛材料的合成方法.特性及应用,提出了开发利用沸石的几点建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号