首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对影响台风最大风速的输入变量较多以及输入变量与输出变量之间的非线性变化特点,首先计算各个输入变量与输出变量间的互信息,这些互信息间接地反映了各个输入变量与输出变量间的相关性;然后根据t检验法确定一个阈值,对于互信息小于阈值的输入变量作不相关变量处理,筛选出最佳的模型输入变量;最后采用高斯过程回归模型对筛选后的样本集进行拟合,在贝叶斯非参数建模的框架下,确定高斯过程回归模型的协方差函数.仿真结果表明,所得高斯过程模型能够满足绝对误差的预定要求,且具有较大的实用价值.  相似文献   

2.
针对于采矿过程中以电机为研究对象的碳排放来源的复杂性以及其影响因素的多样性所引起的碳排放短期预测精度不高的问题,结合灰色理论提出一种基于改进高斯过程回归模型的铅锌矿采矿过程碳排放预测方法。对碳排放来源及其影响因素进行分析,用灰色理论进行聚类分析以归并同类因素;根据灰色关联性分析得到主要影响因素;因传统高斯过程回归模型直接选定协方差函数的方式易导致与研究对象的物理过程拟合度不够高的问题,因而提出了一种依据先验知识的协方差函数选择方式,将四种常用协方差函数建模的训练结果作为反馈,结合极大似然估计法、最小二乘法和蒙特卡洛法参数估计的对比结果得到与研究对象拟合度最高即预测误差最小的协方差函数,进而得到预测效果最好的改进模型。经实验证明,基于该种方法选择协方差函数的模型相较于其他常规预测模型能更精确地预测铅锌矿采矿过程的碳排放量,其预测误差更小。  相似文献   

3.
高斯过程回归方法综述   总被引:4,自引:0,他引:4  
高斯过程回归是基于贝叶斯理论和统计学习理论发展起来的一种全新机器学习方法,适于处理高维数、小样本和非线性等复杂回归问题。在阐述该方法原理的基础上,分析了其存在的计算量大、噪声必须服从高斯分布等问题,给出了改进方法。与神经网络和支持向量机相比,该方法具有容易实现、超参数自适应获取以及输出具有概率意义等优点,方便与预测控制、自适应控制、贝叶斯滤波等相结合。最后总结了其应用情况并展望了未来发展方向。  相似文献   

4.
精准的网络流量预测可以避免网络崩溃,保证网络的流畅度。将高斯过程混合(GPM)模型应用于网络流量的多模态预测。对两段不同地区的网络流量序列进行多模态分析,将之通过归一化和相空间重构后生成样本集并输入GPM模型。采用分类迭代学习算法,利用后验概率最大化和似然函数实现模型参数学习。将GPM模型与支持向量机(SVM)、核回归(KR)、最小最大概率机回归(MPMR)和高斯过程(GP)等模型比较。通过对比均方根误差[(RMSE)]和决定系数[(R2)]评价指标,GPM模型的预测准确度要优于其他四种模型。说明GPM模型能够很好应用于网络流量预测,可以为网络管理者分配网络资源提供参考。  相似文献   

5.
6.
针对复杂不确定性环境下不规则形状的多扩展目标跟踪问题, 本文提出了一种基于高斯过程回归(GPR) 模型的多扩展目标多伯努利(GPR–ETCBMeMBer)滤波算法. 首先, 在利用有限集统计理论(FISST)将多扩展目标的 状态集与量测集分别建模为多伯努利随机有限集(MBer RFS) 和泊松随机有限集(Poisson RFS) 的基础上, 通过 GPR方法建立多扩展目标随机超曲面的跟踪滤波模型. 然后, 基于容积卡尔曼滤波器(CKF)详细推导并提出GPR多 扩展目标多伯努利滤波算法的高斯混合(GM)实现. 最后, 通过构造对星凸形多扩展目标和多群目标跟踪的仿真实 验验证了本文所提算法的有效性.  相似文献   

7.
高斯过程是新近发展的一种机器学习方法,对处理复杂非线性问题具有很好的适应性。针对CFG桩复合地基承载力难以合理确定的问题,提出了基于高斯过程的CFG桩复合地基承载力预测模型。该模型通过对少量训练样本的学习,就可以建立CFG桩复合地基承载力与其影响因素之间的复杂非线性映射关系。将模型应用于工程实例,研究结果表明,CFG桩复合地基承载力预测的高斯过程模型是科学可行的。高斯过程模型的预测精度高,适用性强,具有算法参数自适应化的特点且易于实现,具有良好的工程应用前景。  相似文献   

8.
李振刚 《计算机应用》2014,34(5):1251-1254
针对传统网络流量预测精度低难题,为了获得理想的网络流量预测结果,提出一种基于高斯过程回归(GPR)的网络流量预测模型。该模型首先计算延迟时间和嵌入维数,构建高斯过程回归的学习样本;然后采用高斯过程回归对网络流训练集进行学习,并采用入侵杂草优化对高斯过程回归的参数进行优化;最后采用经典的网络流量测试集对该模型性能进行实验测试。实验结果表明,高斯过程回归模型提高了网络流量的预测精度。  相似文献   

9.
针对在人脸识别中,人脸姿态的变化会对识别结果造成严重的干扰这一问题,以及目前绝大多数人脸识别系统仅支持标准正脸的识别这一现状,基于高斯过程回归分析侧脸轮廓到正脸轮廓的映射关系,提出一种处理侧角在水平-45°到+45°之间的人脸图片的方法,显著地提升了人脸识别系统对侧脸图片的识别率。在Mulit-Pie和FERET两个人脸数据库上进行的多次识别实验表明了该方法的有效性。  相似文献   

10.
基于高斯过程回归的上市股价预测模型   总被引:1,自引:0,他引:1  
杨振舰  夏克文 《计算机仿真》2013,30(1):293-296,304
在新股上市价格的科学优化预测问题的研究中,由于金融数据复杂,特别是新股价格存在极强的无序性。传统股票价格预测方法只能采用线性变化规律进行准确预测,无法对非线性股票价格进行有效建模,降低股价预测精度。为了提高股票价格预测精度,提出一种高斯过程回归的新股上市价格预测模型,通过提取影响新股上市价格形成的指标因素,用其训练纳斯达克(NASDAQ)新股上市价格的历史数据,以粒子群算法优化高斯过程的超参数来预测新股上市价格。将8家公司的上市股票作为实例进行分析,预测结果表明,高斯过程回归的方法提高股票价格预测精度,能够有效地适用于新股上市价格预测。  相似文献   

11.
作为机器学习的一个分支,高斯过程回归在近年来越来越受到重视,在诸多领域得到了广泛的应用;该方法适用于非线性系统的建模,并可以自动在模型的复杂度和建模精度之间进行权衡;但是由于计算复杂度较高,其难以直接被应用于大数据量的学习任务,因此,很多近似方法被发展出来以降低其计算成本;根据是否将训练数据划分为子集,高斯过程回归的近似方法可以被分为全局近似方法和局部近似方法;文章首先阐述了高斯过程回归的理论基础,接下来对全局和局部这两种近似方法进行了分析,然后介绍了其在实际应用中的情况,特别是在软测量和控制领域,最后进行了总结和对其未来研究方向的展望。  相似文献   

12.
13.
软测量仪表在实际应用中往往存在预测精度低、缺乏预测精度信息等问题。基于多模型方法的软测量仪表通过子模型来描述局部变化,可以有效提高软测量仪表预测精度。在本研究中,高斯过程回归(GPR)模型因其预测方差能够反映预测精度信息特性,被用于构建局部子模型。同时,基于不确定性推理方法,本文提出了基于高斯过程回归预测方差的多模型融合策略。最后,将所提方法应用于工业红霉素发酵过程数据。结果表明,与其他高斯过程回归方法相比较,所提出方法预测精度更高,95%置信区间范围更小。  相似文献   

14.
15.
沈赟  张丽清 《计算机工程》2010,36(5):162-164
针对信号处理领域的语音活动探测问题,提出一种基于高斯过程先验假设的概率方法,用于增强语音。利用高斯过程模型的后验概率来估计纯净语音,使用在学习过程中得到的高斯过程模型的参数探测语音活动。实验结果表明,该方法对于在白噪声和有色噪声环境下的语音有较好的增强效果。  相似文献   

16.
准确的风速预测对于风电场和电力系统的稳定运行具有重要意义。本文提出一种基于局部高斯过程的短期风速预测方法。首先,把总的训练样本集按固定长度的时间窗划分成许多个子训练集。然后,运用局部高斯过程模型对各个子训练集进行建模,通过最小化训练集的预测误差为优化目标,用改进粒子群算法求取模型的最优超参数。最后,对某实测风速数据进行风速预测分析,结果表明基于局部高斯过程的短期风速预测能有效提高风速预测精度。  相似文献   

17.
为了获得更优的网络流量预测结果,提出一种复合协方差函数高斯过程(GP)的网络流量预测模型。首先采用复合协方差函数构建GP模型,然后对网络流量训练集进行训练,找到协方差和均值函数的最优参数,最后建立网络流量预测模型,并与支持向量机、神经网络、传统高斯过程进行网络流量的单步和多步预测对比测试。结果表明,相对于对比模型,复合协方差函数GP模型更加能够辨识非线性的网络流量变化趋势,提高了网络流量的预测精确性,是一种有效的复杂网络流量变化预测方法。  相似文献   

18.
19.
针对锂电池健康状态(SOH)估计,提出一种结合了基于压缩感知(CS)的容量增量曲线(ICC)特征提取与高斯过程回归(GPR)的估计方法。该方法从充电电压中提取ICC特征数据作为电池的健康特征(HF);针对原始ICC不准确且易受噪声干扰的问题,使用CS扩充数据维度以得到更加准确且平滑的ICC;通过相关性分析法选取ICC中相关性高的分量作为描述电池HF的参数,然后使用GPR建立电池容量退化模型用于估计SOH,并利用遗传算法优化超参数。最后,使用美国航空航天局(NASA)公开的四个电池数据集验证所提方法的准确性。实验结果表明,所提方法具有较高的估计精度和可靠性。  相似文献   

20.
为充分利用计算机试验数据,本文提出了一种基于计算机模拟的优化设计方法。该方法由正交试验设计、高斯过程回归及序列二次规划组成。其中,应用有限元软件进行正交试验,通过高斯过程回归建立输入响应关系,采用SQP算法求解优化模型。经实例验证,计算结果合理,优化方法有效,从而能够减少计算机模拟的次数,提高设计效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号