首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A postbuckling analysis is presented for a functionally graded cylindrical panel of finite length subjected to lateral pressure in thermal environments. Material properties are assumed to be temperature dependent, and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded cylindrical panel are based on Reddy’s higher-order shear deformation shell theory with von Kármán–Donnell-type of kinematic nonlinearity and include thermal effects. The two straight edges of the panel are assumed to be simply supported and two curved edges are either simply supported or clamped. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflection in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical panels. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of simply supported, pressure-loaded, perfect and imperfect, functionally graded cylindrical panels with two constituent materials under different sets of thermal environments. The influences played by temperature rise, volume fraction distributions, transverse shear deformation, panel geometric parameters, as well as initial geometric imperfections, are studied.  相似文献   

2.
In this paper, the static response of simply supported functionally graded plates subjected to a transverse uniform load and resting on an elastic foundation is examined by using a new higher order displacement model. The present theory exactly satisfies the stress boundary conditions on the top and bottom surfaces of the plate. No transverse shear correction factors are needed, because a correct representation of the transverse shear strain is given. The material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of material constituents. The foundation is modeled as a two-parameter Pasternak-type foundation, or as a Winkler-type one if the second parameter is zero. The equilibrium equations of a functionally graded plate are given based on the new higher order shear deformation theory of plates presented. The effects of stiffness and gradient index of the foundation on the mechanical responses of the plates are discussed. It is established that the elastic foundations significantly affect the mechanical behavior of thick functionally graded plates. The numerical results presented in the paper can serve as benchmarks for future analyses of thick functionally graded plates on elastic foundations.  相似文献   

3.
Centrifugal casting is one of the potential solidification processing techniques used for producing near-net shaped symmetrical cast components with improved properties. The emergence of new class of functionally graded materials has propelled this technique for the fabrication of engineering components and structures with graded property. The specific properties obtained by the use of functionally graded metal matrix composites (FGMMC) are high temperature surface wear resistance, surface friction and thermal properties, adjustable thermal mismatching, reduced interfacial stresses, increased adhesion at metal?Cceramic interface, minimized thermal stresses and increased fracture toughness and crack retardation. Among various processing techniques available for the fabrication of FGMMC, centrifugal casting has emerged as the simplest and cost effective technique for producing large size engineering components of FGMMC. The present paper gives an overview on the developments in use of centrifugal processing technique for processing various functionally graded aluminium alloys and composites. The influence of various process and solidification parameters on microstructure and properties of graded alloys and composites are described.  相似文献   

4.
功能梯度硬质材料是20世纪80年代将功能梯度材料(FGM)的概念应用于硬质合金和金属陶瓷而发展起来的一类新型材料.本文综述了目前国内外用原位扩散控制方法-氮化工艺制备功能梯度硬质材料的研究进展,详细介绍了冶金学基础、成分体系和梯度结构类型、主要类型梯度结构的制备工艺和形成机理,比较了切削性能,并讨论了今后研究工作的重点.  相似文献   

5.
In this technical note, the critical buckling of simply supported functionally graded skew plate subjected to mechanical compressive loads is evaluated using first-order shear deformation theory in conjunction with the finite element approach. The material properties are assumed to vary in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents. The effective material properties are estimated from the volume fractions and the properties of the constituents using the Mori–Tanaka homogenization method. The effects of aspect ratio, material gradient index, and skew angle on the critical buckling loads of functionally graded material plates are highlighted.  相似文献   

6.
Functionally graded steels with graded ferritic and austenitic regions including bainite and martensite intermediate layers produced by electroslag remelting have attracted much attention in recent years. In this article, an empirical model based on the Zener–Hollomon (Z-H) constitutive equation with generalized material constants is presented to investigate the effects of temperature and strain rate on the hot working behavior of functionally graded steels. Next, a theoretical model, generalized by strain compensation, is developed for the flow stress estimation of functionally graded steels under hot compression based on the phase mixture rule and boundary layer characteristics. The model is used for different strains and grading configurations. Specifically, the results for αβγMγ steels from empirical and theoretical models showed excellent agreement with those of experiments of other references within acceptable error.  相似文献   

7.
The objective of the present work is on fabrication of functionally graded SiC/Al composite by direct squeeze infiltration of 6061 aluminum alloy using graded SiC porous preform prepared by inorganic porogen technique. Graded SiC preform is synthesized by varying the concentration of inorganic salt mixture and using Al as the binder. The microstructure analysis indicates the graded distribution of SiC particle and the melt has infiltrated completely throughout the preform to form functionally graded materials. The influence of preform and mold temperature, liquid metal superheat, squeeze pressure, and its rate of application plays major role on solidification microstructures and properties of the composites. The macro porous graded SiC preforms and the composites were characterized using SEM, optical microscopy, and XRD. The major interfacial reaction product is MgAl2O4 spinel which helps in formation of good interface bonding.  相似文献   

8.
A large number of engineering components and structures demand location specific performance under service conditions. A gradual transition in the microstructure or composition can motivate the changes in the functions of the specific locations for meeting the requirements and these tailored materials are termed as functionally graded materials (FGM). Centrifugal casting has emerged as the simplest and cost effective technique for producing large size engineering components of functionally graded metal matrix composites. The present paper describes the formation of different types of gradient solidification microstructures in SiC, B4C, SiC-graphite hybrid, primary silicon, Mg2Si and Al3Ni reinforced functionally graded aluminium composites processed by centrifugal casting and correlate the microstructures with materials and processing parameters. The densities and size of the reinforcements play a major role in the formation of graded microstructures, the high density particles/phases both SiC and Al3Ni form gradation towards the outer periphery and low density particles like graphite, primary silicon and Mg2Si form gradation towards inner periphery. The B4C particle having closer density to Al alloy has given more scattered distribution compare to other systems. However, functionally graded composite containing the SiC and Graphite particles has shown gradation towards inner periphery.  相似文献   

9.
Exact explicit eigenvalues are found for compression buckling, hygrothermal buckling, and vibration of sandwich plates with dissimilar facings and functionally graded plates via analogy with membrane vibration. These results apply to simply supported polygonal plates using the first-order shear deformation theory and the classical theory. A Winkler-Pasternak elastic foundation, a hydrostatic inplane force, hygrothermal effects, and rotary inertias are incorporated. Bridged by the vibrating membrane, exact correspondence is readily established between any pairs of eigenvalues associated with buckling and vibration of sandwich plates, functionally graded plates, and homogeneous plates. Positive definiteness is proved for the critical buckling hydrostatic pressure and, in the range of either tension loading or compression loading prior to occurrence of buckling, for the natural vibration frequency.  相似文献   

10.
The pseudodynamic thermoelastic response of functionally graded ceramic-metal cylinders is studied. This paper presents the finite-element formulation of the 1D, axisymmetric heat transfer equation and the thermoelastic radial boundary value problem. A two-step solution of the governing equations of thermoelasticity is presented. Thermoelastic coupling is considered by taking into effect the temperature dependence of the constitutive equations. Nonlinearity due to the temperature dependence of the material properties of the constituent ceramic and metal is considered. A parametric study with respect to varying volume fraction of the metal is conducted. Temperature and radial∕hoop stress distributions arising due to rapid heating of the inner surface of the functionally graded cylinder are presented.  相似文献   

11.
实验选用3种粒径为15μm、30μm和52μm的混合SiC颗粒制备铝基梯度功能复合材料,并采用半固态复合搅拌法制备浆料,制备出阶跃式变化的梯度功能复合零件毛坯,通过设计零件机械切削工艺,在毛坯的SiC颗粒偏聚层加工出璧厚2.5mm,高80mm的薄璧筒状零件。  相似文献   

12.
WC-Co功能梯度硬质合金研究进展   总被引:2,自引:0,他引:2  
概述了梯度硬质合金的分类;介绍了WC-Co梯度硬质合金的一些制备方法及应用领域;重点总结了梯度结构的形成机理、驱动力及生长动力学等方面的研究进展;分析了目前存在的不足,展望了梯度硬质合金的发展前景。  相似文献   

13.
Theoretical principles are given for the computer-aided design of functionally graded materials (FGM) for use under graded loading. The graded property distribution makes itself felt most strongly in wave processes. On shock loading, the FGM gives rise to new types of wave: isoentropic compression waves and soliton-type ones.  相似文献   

14.
This work applies a two-state interaction integral to obtain stress intensity factors along cracks in three-dimensional functionally graded materials. The procedures are applicable to planar cracks with curved fronts under mechanical loading, including crack-face tractions. Interaction-integral terms necessary to capture the effects of material nonhomogeneity are identical in form to terms that arise due to crack-front curvature. A discussion reviews the origin and effects of these terms, and an approximate interaction-integral expression that omits terms arising due to curvature is used in this work to compute stress intensity factors. The selection of terms is driven by requirements imposed by material nonhomogeneity in conjunction with appropriate mesh discretization along the crack front. Aspects of the numerical implementation with (isoparametric) graded finite elements are addressed, and examples demonstrate the accuracy of the proposed method.  相似文献   

15.
A new method was proposed to design raw material powders on both the size distribution and the masses during the fabrication of functionally graded materials (FGMs) by co-sedimentation. This method was confirmed by producing Mo-Ti compositionally graded material and the experimental results show that it is fairly valid in the design of the particle size distribution of raw material. Analysis of the electron probe reveals that a smooth transition in composition through the thickness of the sintered body has been achieved and the tested values are fairly consistent with the design ones.  相似文献   

16.
In the present work, dynamic buckling behavior of clamped functionally graded spherical caps suddenly exposed to a thermal field is studied using the finite-element procedure. The material properties are graded in the thickness direction. The temperature load corresponding to a sudden jump in the maximum average displacement in the time history of the shell structure is taken as the dynamic buckling temperature. Numerical study is carried out to highlight the influences of shell geometries and material gradient index on the critical buckling temperature.  相似文献   

17.
真空渗碳制备双相梯度硬质合金的研究   总被引:1,自引:0,他引:1  
介绍了采用真空渗碳来制备试样外层为无η相正常组织而芯部为η相、且粘结相钴呈成分梯度分布的双相硬质合金的方法,试验发现,在真空烧结后期引入甲烷与丙酮蒸气的混合气体进行摆式渗碳,是制备该类梯度硬质合金非常有效的方法。  相似文献   

18.
In this work, functionally graded steel has been produced via diffusion of the alloying elements during electroslag refining. As the alloying element diffuses, it creates alternating regions with different transformation characteristics. Thus, it is possible to obtain steel composites with various combinations of ferrite, bainite, martensite, and austenite phases. By choosing the appropriate thickness of the slices used to set up the consumable electrodes and subsequent heat treatment, different functionally graded phases may be produced. The diffusion coefficients of chromium, nickel, and carbon atoms at temperatures just above the melting point of iron were estimated. Also, the thicknesses of the emerging bainite and martensite phases were determined and are in good agreement with the experimental results.  相似文献   

19.
A compressive postbuckling analysis is presented for a functionally graded cylindrical panel with piezoelectric actuators subjected to the combined action of mechanical, electrical, and thermal loads. The temperature field considered is assumed to be of uniform distribution over the panel surface and through the panel thickness and the electric field considers only the transverse component EZ. The material properties of the presently considered functionally graded materials (FGMs) are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, whereas the material properties of the piezoelectric layers are assumed to be independent of the temperature and the electric field. The governing equations are based on a higher-order shear deformation theory with a von Kármán-Donnell-type of kinematic nonlinearity. A boundary layer theory for shell buckling is extended to the case of hybrid FGM cylindrical panels of finite length. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the compressive postbuckling behavior of perfect and imperfect FGM cylindrical panels with fully covered piezoelectric actuators, under different sets of thermal and electrical loading conditions. The effects due to temperature rise, volume fraction distribution, applied voltages, panel geometric parameters, in-plane boundary conditions, as well as initial geometric imperfections are studied.  相似文献   

20.
采用粉末冶金技术制备WC-15%TiC-6%Co硬质合金(质量分数), 通过控制氮气压力、固相烧结温度和烧结时间对合金进行渗氮烧结, 得到表层富立方相WC-TiC-Co功能梯度硬质合金。利用扫描电子显微镜、X射线衍射仪和能谱仪研究硬质合金梯度区域的微观组织、物相组成及元素分布。结果表明: 制备的WC-TiC-Co硬质合金梯度层厚度大于20 μm, 并且表层富含Ti元素和N元素, 其组成形式为Ti(C0.7, N0.3)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号