首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A report is presented on an InAs channel field-effect transistor (FET) based on AlGaSb/InAs/AlSb/AlGaSb structures grown by molecular-beam epitaxy. Excellent pinch-off characteristics have been obtained. An FET with a gate length of 1.7 μm showed transconductances ranging from 460 mS/mm (at Vds=0.5 V) to 509 mS/mm (at Vds=1 V) and a K factor of 1450 mS/Vmm (at Vds=1 V) at room temperature  相似文献   

2.
N-channel MOSFETs with different gate dielectrics, such as silicon dioxide, silicon dioxide annealed in nitrous oxide (NO), and reoxidized nitrided oxide (ONO), were first hot-carrier (HC) stressed and then irradiated to a total dose of 1.5 Mrd. For equal substrate current stressing NO devices have the least degradation, whereas the threshold voltage (Vt) shift due to irradiation is maximum for these devices. For all three types of gate dielectrics the V t shift due to irradiation of HC stressed devices was higher than that of the unstressed device. However, for ONO devices the V t shift due to irradiation of the hot-electron stressed (stressing with Vd=Vg=6.5 V) device was less than that of the unstressed device  相似文献   

3.
A process technology for direct-coupled FET logic (DCFL) circuits on InP substrates, based on enhancement-mode InGaAs/InAlAs heterostructure-insulated-gate FETs (HIGFETs) is discussed. Its performance was demonstrated by fabricating 11- and 19-stage ring oscillators. The circuits were fabricated on undoped lattice-matched heterostructures grown by molecular beam epitaxy (MBE), using a refractory-gate process with self-aligned sidewalls to achieve a lightly-doped-drain (LDD) structure. For a gate length of 1.2 μm, with Vdd=2 V, the best propagation delay observed was 23 ps/stage, with associated power of 2.2 mW/stage  相似文献   

4.
Hot-carrier stressing was carried out on 1-μm n-type MOSFETs at 77 K with fixed drain voltage Vd=5.5 V and gate voltage Vg varying from 1.5 to 6.5 V. It was found that the maximum transconductance degradation ΔGm and threshold voltage shift ΔVt, do not occur at the same Vg. As well, ΔKt is very small for the Vg <Vd stress regime, becomes significant at VgVd, and then increases rapidly with increasing Vg, whereas ΔGm has its maximum maximum in the region of maximum substrate current. The behavior is explained by the localized nature of induced defects, which is also responsible for a distortion of the transconductance curves and even a slight temporary increase in the transconductance during stress  相似文献   

5.
The switching time of a-Si thin-film transistors (TFTs) was measured. During pulsed operation there are dynamic changes of threshold voltage (Vt) and gate capacitance which occur mostly on a time scale ranging from microseconds to milliseconds. These can be qualitatively explained in terms of the fraction of the induced channel charge which is trapped in deep states in the semiconductor, and its spatial distribution. The value of Vt can decrease by a much as 3 V during a pulse and also depends on the duty cycle. In pulsed operation, Vt is always less than the static value; hence, the current output will be higher than calculated from the static characteristics and will depend on the duty cycle. The effective mobility remains nearly constant with changes of operating cycle. The change in source-gate capacitance confirms the inward diffusion of the trapped charge  相似文献   

6.
A super-low-noise two-mode channel FET (TMT) with high- and plateau-shaped transconductance (gm) characteristics has been developed. It has two electron transport modes against the applied gate voltage (Vgs). That is, the electrons mainly drift in a highly doped channel region at a shallow Vgs. A plateau gm region and the maximum gm were achieved at a Vgs range of -0.25~+0.5 V and 535 mS/mm, respectively. The minimum noise figure and associated gain for the TMT were superior in the low-drain-current (Ids) region and nearly equal in the middle and high Ids region to those of an AlGaAs/InGaAs pseudomorphic HEMT fabricated using the same wafer process and device geometry  相似文献   

7.
A low-power CMOS dual-modulus (divide-by-128/129) prescaler IC is described. The IC has been fabricated with symmetric CMOS technology that optimizes simultaneously the characteristics of both the p-channel and n-channel transistors for low-power-supply-voltage operation. Two different gate oxide thicknesses of 175 and 100 Å have been used. The best prescalar fabricated with 175-Å gate oxide functions at 2.06 GHz with 25-m W power consumption (Leff=0.5 μm; Vdd=3.5 V). Preliminary results for prescalars fabricated with 100-Å gate oxide show that 4.2-GHz operation is possible (Leff=0.4 μm; V dd=3.5 V). Power-supply voltage as low as 1.7 V can be used for the prescalar to function at 1 GHz with a power consumption of only 4 mW  相似文献   

8.
Hot-carrier stressing carried out as a function of substrate voltage on 2-μm NMOS devices under bias conditions Vd =8 V and Vg=5.5 V is discussed. The time power-law dependence of stressing changes as a function of substrate bias (Vb), having a power-law gradient of 0.5 for Vb=0 V and 0.3 for Vb=-9 V. Investigation of the type of damage resulting from stressing shows that at Vb=0 V, interface state generation results, while at Vb=-9 V, the damage is mostly by charge trapping. Measurements of the gate current under these two substrate bias conditions show that the gate electron current increases by over two orders of magnitude upon application of a strong back bias. It is suggested that the electron trapping arises from this enhanced gate electron current under large substrate voltage conditions  相似文献   

9.
The authors present formation conditions for ion-implanted regions of a GaAs buried p-layer lightly doped drain (BPLDD) MESFET that can improve short-channel effect, Vth uniformity, and FET operating speed, simultaneously. For 0.7-μm gates, a Mg+ dose of 2×1012 cm-2 at 300 keV and a Si+ dose of 2×1012 cm-2 at 50 keV are suitable for the p layer and n' layer, respectively. A σV th of 7 mV is realized. Gate-edge capacitance of the 0.7-μm-gate BPLDD that consists of both overlap capacitance and fringing capacitance is successfully reduced to 0.5 fF/μm, which is about 50% of that of a non-LDD buried p-layer (BP) FET. Another parasitic capacitance due to the p-layer was found to have less effect on the speed than the gate-edge one. Consequently, the gate propagation delay time of the BPLDD can be reduced to 15 ps at power dissipation of 1 mW/gate, which is about 65% of that of a BP. Applying the 0.7-μm-gate BPLDD to 16-kb SRAMs, the authors have obtained a maximum access time of less than 5 ns with a galloping test pattern  相似文献   

10.
The hot-carrier properties of planar and graded gate structures (upturning of the gate edge in the gate overlap region) of n-MOS transistors were examined. It was found that the type of degradation suffered by each type of device depends on the shape of the gate edge. This is interpreted in terms of the degree of gate control of the gate over the region in which the damage takes place in the different devices. The nongraded gate (NGG) devices degrade chiefly by a Vt shift, whereas the graded gate (GG) devices show a pronounced transconductance decay, with practically no Vt shift. It is suggested that the damage is situated in the gate overlap region, and that the different degradations result from a weaker field control of the gate over the degraded region leading to a series resistance type of effect in the case of the GG structure. This is supported by two-dimensional simulations  相似文献   

11.
Described is a 5-V-only 4-Mb (512K×8 b) NAND EEPROM (electrically erasable programmable ROM) with tight programmed threshold voltage (Vt) distribution, controlled by a novel program-verify technique. A tight programmed Vt distribution width of 0.8 V for the 4 Mb cell array is achieved. By introducing a compact row-decoder circuit, a die size of 7.28 mm×15.31 mm is achieved using 1.0 μm design rules. A unique twin p-well structure has made it possible to realize low-power 5 V-only erase/program operation easily and to achieve 100 K-cycle endurance  相似文献   

12.
An experimental technique for accurately determining both the inversion charge and the channel mobility μ of a MOSFET is presented. With this new technique, the inversion charge is measured as a function of the gate and drain voltages. This improvement allows the channel mobility to be extracted independent of drain voltage VDS over a wide range of voltages (VDS=20-100 mV). The resulting μ(VGS) curves for different VDS show no drastic mobility roll-off at V GS near VTH. This suggests that the roll-off seen in the mobility data extracted using the split C- V method is probably due to inaccurate inversion charge measurements instead of Coulombic scattering  相似文献   

13.
The device consists primarily of several molecular-beam-epitaxy (MBE-) grown GaAs/(AlGa)As resonant tunneling diodes connected in parallel. This device exhibits multiple peaks in the I-V characteristic. When a load resistor is connected, the circuit can be operated in a multiple stable mode. With this concept, implementation of three-state and four-state memory cells are made. In the three-state case the operating points at voltages V0=0.27 V , V1=0.42 V, and V2=0.53 V represent the logic levels 0, 1, and 2. Similarly for the four-state memory cell the logic levels voltages are V0=0.35 V, V1=0.42 V, V2=0.54 V, and V 3=0.59 V. A suggestion of an integrated device structure using this concept is also presented  相似文献   

14.
The low-power microwave performance of an enhancement-mode ion-implanted GaAs JFET is reported. A 0.5-μm×100-μm E-JFET with a threshold voltage of Vth=0.3 V achieved a maximum DC transconductance of gm=489 mS/mm at V ds=1.5 V and Ids=18 mA. Operating at 0.5 mW of power with Vds=0.5 V and Ids =1 mA, the best device on a 3-in wafer achieved a noise figure of 0.8 dB with an associated gain of 9.6 dB measured at 4 GHz. Across a 3-in wafer the average noise figure was Fmin=1.2 dB and the average associated gain was Ga=9.8 dB for 15 devices measured. These results demonstrate that the E-JFET is an excellent choice for low-power personal communication applications  相似文献   

15.
The fabrication of a silicon heterojunction microwave bipolar transistor with an n+ a-Si:H emitter is discussed, and experimental results are given. The device provides a base sheet resistance of 2 kΩ/□ a base width 0.1 μm, a maximum current gain of 21 (VCE=6 V, Ic=15 mA), and an emitter Gummel number G E of about 1.4×1014 Scm-4. From the measured S parameters, a cutoff frequency ft of 5.5 GHz and maximum oscillating frequency fmax of 7.5 GHz at VCE=10 V, Ic=10 mA are obtained  相似文献   

16.
A high-performance standard cell library for the Tektronix advanced bipolar process GST1 has been developed. The library is targeted for the 250-MIPS (million instructions per second) fast reduced instruction set computer (FRISC) project. The GST1 devices have a minimal emitter size of 0.6 μm×2.4 μm and a maximum f t of 15.5 GHz. By combining advanced bipolar technology and high-speed differential logic, gate propagation delays of 90 ps can be achieved at a power dissipation of 70 mW. The fastest buffers/inverters have a propagation delay of only 68 ps. A 32-b ALU (arithmetic and logic unit) partitioned into four slices can perform an addition in 3 ns using differential standard cells with improved emitter-follower outputs and fast differential I/O drivers. A modeling technique for high-speed differential current tree logic is introduced. The technique gives accurate timing information and models the transient behavior of current trees  相似文献   

17.
Electrical and reliability characteristics of diagonally shaped n-channel MOSFETs have been extensively investigated. Compared with the conventional device structure, diagonal MOSFETs show longer device lifetime under peak Isub condition (Vg =0.5 Vd). However, in the high-gate-bias region (Vg=Vd), diagonal MOSFETs exhibit a significantly higher degradation rate. From the Isub versus gate voltage characteristics, this larger degradation rate under high gate bias is concluded to be due mainly to the current-crowding effect at the drain corner. For a cell-transistor operating condition (Vg>Vd), this current-crowding effect in the diagonal transistor can be a serious reliability concern  相似文献   

18.
The observation of negative differential resistance (NDR) and negative transconductance at high drain and gate fields in depletion-mode AlGaAs/InGaAs/GaAs MODFETs with gate lengths L g ~0.25 μm is discussed. It is shown that under high bias voltage conditions, Vds>2.5 V and Vgs>0 V, the device drain current characteristic switches from a high current state to a low current state, resulting in reflection gain in the drain circuit of the MODFET. The decrease in the drain current of the device corresponds to a sudden increase in the gate current. It is shown that the device can be operated in two regions: (1) standard MODFET operation for Vgs<0 V resulting in fmax values of >120 GHz, and (2) a NDR region which yields operation as a reflection gain amplifier for Vgs >0 V and Vds>2.5 V, resulting in 2 dB of reflection gain at 26.5 GHz. The NDR is attributed to the redistribution of charge and voltage in the channel caused by electrons crossing the heterobarrier under high-field conditions. The NDR gain regime, which is controllable by gate and drain voltages, is a new operating mode for MODFETs under high bias conditions  相似文献   

19.
The successful fabrication of an ion-implanted GaAs/AlGaAs heterojunction FET device is discussed. Half-micrometer gate-length FET devices are fabricated by ion implantation into GaAs/AlGa heterostructures grown by metalorganic chemical vapor deposition (MOCVD) on 3-in-diameter GaAs substrates. The FET device exhibits a maximum extrinsic transconductance of 280 mS/mm with reduced transconductance variation over 2 V of gate bias. Excellent microwave performance is achieved with an ft of 40 GHz, which is comparable to results obtained from 0.25-μm gate GaAs MESFETs. The effects of ion implantation on the heterojunction and corresponding device characteristics are also discussed  相似文献   

20.
A 0.4-μm GaAs IC fabrication process which demonstrates excellent yields for direct-coupled FET logic circuits of up to 5000 gates for high-speed LSI digital applications is discussed. The refractory self-aligned gate process uses 1-μm stepper lithography. An n+/n'/buried-p structure results in superior threshold voltage uniformity for a 0.4-μm gate length, with σV T as low as 8 mV over 3-in wafers. Simple parallel array multipliers were used for process validation. Die-sort yields for a 16-b×16-b multiplier are typically better than 55%, and as high as 88%. A 5000-gate 20-b×20-b multiplier shows yield as high as 61%, and a Poisson yield model predicts a die-sort yield of 30% for a 10000-gate circuit. Multiplication times of 3.6 ns for the 16-b×16-b and 4.5 ns for the 20-b×20-b multiplier have been measured. The corresponding loaded gate delay and power-delay product are 46 ps/gate and 40 fJ, respectively, at room temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号