首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Recent reports document that α‐tetralone (3,4‐dihydro‐2H‐naphthalen‐1‐one) is an appropriate scaffold for the design of high‐potency monoamine oxidase (MAO) inhibitors. Based on the structural similarity between α‐tetralone and 1‐indanone, the present study involved synthesis of 34 1‐indanone and related indane derivatives as potential inhibitors of recombinant human MAO‐A and MAO‐B. The results show that C6‐substituted indanones are particularly potent and selective MAO‐B inhibitors, with IC50 values ranging from 0.001 to 0.030 μM . C5‐Substituted indanone and indane derivatives are comparatively weaker MAO‐B inhibitors. Although the 1‐indanone and indane derivatives are selective inhibitors of the MAO‐B isoform, a number of homologues are also potent MAO‐A inhibitors, with three homologues possessing IC50 values <0.1 μM . Dialysis of enzyme–inhibitor mixtures further established a selected 1‐indanone as a reversible MAO inhibitor with a competitive mode of inhibition. It may be concluded that 1‐indanones are promising leads for the design of therapies for neurodegenerative and neuropsychiatric disorders such as Parkinson’s disease and depression.  相似文献   

2.
A series of small‐molecule histone deacetylase (HDAC) inhibitors, which feature zinc binding groups derived from cysteine, were synthesized. These inhibitors were tested against multiple HDAC isoforms, and the most potent, compound 10 , was determined to have IC50 values below 1 μM . The compounds were also tested in a cellular assay of oxidative stress‐induced neurodegeneration. Many of the inhibitors gave near‐complete protection against cell death at 10 μM without the neurotoxicity seen with hydroxamic acid‐based inhibitors, and were far more neuroprotective than HDAC inhibitors currently in clinical trials. Both enantiomers of cysteine were used in the synthesis of a variety of novel zinc‐binding groups (ZBGs). Derivatives of L ‐cysteine were active in the HDAC inhibition assays, while the derivatives of D ‐cysteine were inactive. Notably, the finding that both the D ‐ and L ‐cysteine derivatives were active in the neuroprotection assays suggests that multiple mechanisms are working to protect the neurons from cell death. Molecular modeling was employed to investigate the differences in inhibitory activity between the HDAC inhibitors generated from the two enantiomeric forms of cysteine.  相似文献   

3.
This paper describes the design, synthesis, and biological evaluation of peptidomimetic boronates as inhibitors of the 20S proteasome, a validated target in the treatment of multiple myeloma. The synthesized compounds showed a good inhibitory profile against the ChT‐L activity of 20S proteasome. Compounds bearing a β‐alanine residue at the P2 position were the most active, that is, 3‐ethylphenylamino and 4‐methoxyphenylamino (R)‐1‐{3‐[4‐(substituted)‐2‐oxopyridin‐1(2H)‐yl]propanamido}‐3‐methylbutylboronic acids ( 3 c and 3 d , respectively), and these derivatives showed inhibition constants (Ki) of 17 and 20 nM , respectively. In addition, they co‐inhibited post glutamyl peptide hydrolase activity ( 3 c , Ki=2.57 μM ; 3 d , Ki=3.81 μM ). No inhibition was recorded against the bovine pancreatic α‐chymotrypsin, which thus confirms the selectivity towards the target enzyme. Docking studies of 3 c and related inhibitors into the yeast proteasome revealed the structural basis for specificity. The evaluation of growth inhibitory effects against 60 human tumor cell lines was performed at the US National Cancer Institute. Among the selected compounds, 3 c showed 50 % growth inhibition (GI50) values at the sub‐micromolar level on all cell lines.  相似文献   

4.
A library of 3,4‐(methylenedioxy)aniline‐derived semicarbazones was designed, synthesized, and evaluated as monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors for the treatment of neurodegenerative diseases. Most of the new compounds selectively inhibited MAO‐B and AChE, with IC50 values in the micro‐ or nanomolar ranges. Compound 16 , 1‐(2,6‐dichlorobenzylidene)‐4‐(benzo[1,3]dioxol‐5‐yl)semicarbazide presented a balanced multifunctional profile of MAO‐A (IC50=4.52±0.032 μm ), MAO‐B (IC50=0.059±0.002 μm ), and AChE (IC50=0.0087±0.0002 μm ) inhibition without neurotoxicity. Kinetic studies revealed that compound 16 exhibits competitive and reversible inhibition against MAO‐A and MAO‐B, and mixed‐type inhibition against AChE. Molecular docking studies further revealed insight into the possible interactions within the enzyme–inhibitor complexes. The most active compounds were found to interact with the enzymes through hydrogen bonding and hydrophobic interactions. Additionally, in silico molecular properties and ADME properties of the synthesized compounds were calculated to explore their drug‐like characteristics.  相似文献   

5.
Monoamine oxidase (MAO) is an important drug target for the treatment of neurological disorders. Several 3‐arylcoumarin derivatives were previously described as interesting selective MAO‐B inhibitors. Preserving the trans‐stilbene structure, a series of 2‐arylbenzofuran and corresponding 3‐arylcoumarin derivatives were synthesized and evaluated as inhibitors of both MAO isoforms, MAO‐A and MAO‐B. In general, both types of derivatives were found to be selective MAO‐B inhibitors, with IC50 values in the nano‐ to micromolar range. 5‐Nitro‐2‐(4‐methoxyphenyl)benzofuran ( 8 ) is the most active compound of the benzofuran series, presenting MAO‐B selectivity and reversible inhibition (IC50=140 nM ). 3‐(4′‐Methoxyphenyl)‐6‐nitrocoumarin ( 15 ), with the same substitution pattern as that of compound 8 , was found to be the most active MAO‐B inhibitor of the coumarin series (IC50=3 nM ). However, 3‐phenylcoumarin 14 showed activity in the same range (IC50=6 nM ), is reversible, and also severalfold more selective than compound 15 . Docking experiments for the most active compounds into the MAO‐B and MAO‐A binding pockets highlighted different interactions between the derivative classes (2‐arylbenzofurans and 3‐arylcoumarins), and provided new information about the enzyme–inhibitor interaction and the potential therapeutic application of these scaffolds.  相似文献   

6.
Monoamine oxidase B (MAO‐B) is an important drug target for the treatment of neurological disorders. A series of 6‐nitrobenzothiazole‐derived semicarbazones were designed, synthesized, and evaluated as inhibitors of the rat brain MAO‐B isoenzyme. Most of the compounds were found to be potent inhibitors of MAO‐B, with IC50 values in the nanomolar to micromolar range. Molecular docking studies were performed with AutoDock 4.2 to deduce the affinity and binding mode of these inhibitors toward the MAO‐B active site. The free energies of binding (ΔG) and inhibition constants (Ki) of the docked compounds were calculated by the Lamarckian genetic algorithm (LGA) of AutoDock 4.2. Good correlations between the calculated and experimental results were obtained. 1‐[(4‐Chlorophenyl)(phenyl)methylene]‐4‐(6‐nitrobenzothiazol‐2‐yl)semicarbazide emerged as the lead MAO‐B inhibitor, with top ranking in both the experimental MAO‐B assay (IC50: 0.004±0.001 μM ) and in computational docking studies (Ki: 1.08 μM ). Binding mode analysis of potent inhibitors suggests that these compounds are well accommodated by the MAO‐B active site through stable hydrophobic and hydrogen bonding interactions. Interestingly, the 6‐nitrobenzothiazole moiety is stabilized in the substrate cavity with the aryl or diaryl residues extending up into the entrance cavity of the active site. According to our results, docking experiments could be an interesting approach for predicting the activity and binding interactions of this class of semicarbazones against MAO‐B. Thus, a binding site model consisting of three essential pharmacophoric features is proposed, and this can be used for the design of future MAO‐B inhibitors.  相似文献   

7.
A series of aminostilbene—arylpropenones were designed and synthesized by Michael addition and were investigated for their cytotoxic activity against various human cancer cell lines. Some of the investigated compounds exhibited significant antiproliferative activity against a panel of 60 human cancer cell lines of the US National Cancer Institute, with 50 % growth inhibition (GI50) values in the range from <0.01 to 19.9 μM . One of the compounds showed a broad spectrum of antiproliferative efficacy on most of the cell lines, with a GI50 value of <0.01 μM . All of the synthesized compounds displayed cytotoxicity against A549 (non‐small‐cell lung cancer), HeLa (cervical carcinoma), MCF‐7 (breast cancer), and HCT116 (colon carcinoma) with 50 % inhibitory concentration (IC50) values ranging from 0.011 to 8.56 μM . A cell cycle assay revealed that these compounds arrested the G2/M phase of the cell cycle. Two compounds exhibited strong inhibitory effects on tubulin assembly with IC50 values of 0.71 and 0.79 μM . Moreover, dot‐blot analysis of cyclin B1 demonstrated that some of the congeners strongly induced cyclin B1 protein levels. Molecular docking studies indicated that these compounds occupy the colchicine binding site of tubulin.  相似文献   

8.
Monoamine oxidase (MAO) is a useful target in the treatment of neurodegenerative diseases and depressive disorders. Both isoforms, MAO‐A and MAO‐B, are known to play critical roles in disease progression, and as such, the identification of novel, potent and selective inhibitors is an important research goal. Here, two series of 3‐phenylcoumarin derivatives were synthesized and evaluated against MAO‐A and MAO‐B. Most of the compounds tested acted preferentially on MAO‐B, with IC50 values in the micromolar to nanomolar range. Only 6‐chloro‐4‐hydroxy‐3‐(2’‐hydroxyphenyl)coumarin exhibited activity against the MAO‐A isoform, while still retaining good selectivity for MAO‐B. 6‐Chloro‐3‐phenylcoumarins unsubstituted at the 4 position were found to be more active as MAO‐B inhibitors than the corresponding 4‐hydroxylated coumarins. For 4‐unsubstituted coumarins, meta and para positions on the 3‐phenyl ring seem to be the most favorable for substitution. Molecular docking simulations were used to explain the observed hMAO‐B structure–activity relationships for this type of compound. 6‐Chloro‐3‐(3’‐methoxyphenyl)coumarin was the most active compound identified (IC50=0.001 μM ) and is several times more potent and selective than the reference compound, R‐(?)‐deprenyl hydrochloride. This compound represents a novel tool for the further investigation of the therapeutic potential of MAO‐B inhibitors.  相似文献   

9.
As the Zika virus protease is an essential and well-established target for the development of antiviral agents, we biochemically screened for inhibitors using a purified recombinantly expressed form of this enzyme. As a result, we were able to identify 10 new Zika virus protease inhibitors. These compounds are natural products and showed strong inhibition in the biochemical assays. Inhibitory constants values for the compounds ranged from 5 nM to 8 μM. Among the most potent inhibitors are flavonoids like irigenol hexa-acetate (Ki=0.28 μM), katacine (Ki=0.26 μM), theaflavin gallate (Ki=0.40 μM) and hematein (Ki=0.33 μM). Inhibitors from other groups of natural products include sennoside A (Ki=0.19 μM) and gossypol (Ki=0.70 μM). Several of the obtained compounds are known for their beneficial health effects and have acceptable pharmacokinetic characteristics. Thus, they could be of interest as lead compounds for the development of important and essential Zika antiviral drugs.  相似文献   

10.
A series of novel 2‐amino‐3,4,5‐trimethoxybenzophenone analogues exhibited excellent activity as tubulin polymerization inhibitors by targeting the colchicine binding site of microtubules. The lead compound 17 exhibited an IC50 value of 1.6 μM , similar to that of combretastatin A‐4 (IC50=1.9 μM ). It also displayed remarkable anti‐proliferative activity, with IC50 values ranging from 7–16 nM against a variety of human cancer cell lines and one MDR(+) cancer cell line. SAR information indicated that the introduction of an amino group at the C2 position of benzophenone ring A and the C3’ position of benzophenone ring B play important roles in maximizing activity.  相似文献   

11.
Antiapoptotic Bcl‐2 family proteins, such as Bcl‐xL, Bcl‐2, and Mcl‐1, are often overexpressed in tumor cells, which contributes to tumor cell resistance to chemotherapies and radiotherapies. Inhibitors of these proteins thus have potential applications in cancer treatment. We discovered, through structure‐based virtual screening, a lead compound with micromolar binding affinity to Mcl‐1 (inhibition constant (Ki)=3 μM ). It contains a phenyltetrazole and a hydrazinecarbothioamide moiety, and it represents a structural scaffold not observed among known Bcl‐2 inhibitors. This work presents the structural optimization of this lead compound. By following the scaffold‐hopping strategy, we have designed and synthesized a total of 82 compounds in three sets. All of the compounds were evaluated in a fluorescence‐polarization binding assay to measure their binding affinities to Bcl‐xL, Bcl‐2, and Mcl‐1. Some of the compounds with a 3‐phenylthiophene‐2‐sulfonamide core moiety showed sub‐micromolar binding affinities to Mcl‐1 (Ki=0.3–0.4 μM ) or Bcl‐2 (Ki≈1 μM ). They also showed obvious cytotoxicity on tumor cells (IC50<10 μM ). Two‐dimensional heteronuclear single quantum coherence NMR spectra of three selected compounds, that is, YCW‐E5, YCW‐E10, and YCW‐E11, indicated that they bind to the BH3‐binding groove on Bcl‐xL in a similar mode to ABT‐737. Several apoptotic assays conducted on HL‐60 cells demonstrated that these compounds are able to induce cell apoptosis through the mitochondrial pathway. We propose that the compounds with the 3‐phenylthiophene‐2‐sulfonamide core moiety are worth further optimization as effective apoptosis inducers with an interesting selectivity towards Mcl‐1 and Bcl‐2.  相似文献   

12.
A series of sulfonamide‐containing hydroxylated chalcone ( 4 – 7 ) and quinolinone ( 8 , 9 ) derivatives was synthesised and tested for inhibition of the trans‐sialidase from Trypanosoma cruzi (TcTS). IC50 values for these inhibitors ranged from 0.6 to 7.3 μM , with the dihydroxylated (catechol) derivatives being the tightest binders. Full kinetic analyses of inhibition were performed for these catechol derivatives, both for the transglycosylation reaction in the presence of lactose and for the hydrolysis reaction in its absence. Competitive inhibition was seen in each case with Ki values for 5 , 7 and 9 of 2.0, 2.2 and 0.2 μM , respectively, in the absence of lactose, and 4.6, 3.7 and 0.4 μM in its presence. None of the compounds tested showed any significant inhibition of the human sialidase Neu2, at concentrations up to 200 μM .  相似文献   

13.
The enzyme pyruvate kinase M2 (PKM2) plays a major role in the switch of tumor cells from oxidative phosphorylation to aerobic glycolysis, one of the hallmarks of cancer. Different allosteric inhibitors or activators and several posttranslational modifications regulate its activity. Head and neck squamous cell carcinoma (HNSCC) is a common disease with a high rate of recurrence. To find out more about PKM2 and its modulation in HNSCC, we examined a panel of HNSCC cells using real-time cell metabolic analysis and Western blotting with an emphasis on phosphorylation variant Tyr105 and two reagents known to impair PKM2 activity. Our results show that in HNSCC, PKM2 is commonly phosphorylated at Tyrosine 105. Its levels depended on tyrosine kinase activity, emphasizing the importance of growth factors such as EGF (epidermal growth factor) on HNSCC metabolism. Furthermore, its correlation with the expression of CD44 indicates a role in cancer stemness. Cells generally reacted with higher glycolysis to PKM2 activator DASA-58 and lower glycolysis to PKM2 inhibitor Compound 3k, but some were more susceptible to activation and others to inhibition. Our findings emphasize the need to further investigate the role of PKM2 in HNSCC, as it could aid understanding and treatment of the disease.  相似文献   

14.
15.
A library of 31 butyrylcholinesterase (BChE) and cathepsin B (CatB) inhibitors was screened in vitro for inhibition of deoxyribonuclease I (DNase I). Compounds 22 , 8 and 7 are among the most potent synthetic non-peptide DNase I inhibitors reported to date. Three 8-hydroxyquinoline analogues inhibited both DNase I and BChE with IC50 values below 35 μM and 50 nM, respectively, while two nitroxoline derivatives inhibited DNase I and Cat B endopeptidase activity with IC50 values below 60 and 20 μM. Selected derivatives were screened for various co-target binding affinities at dopamine D2 and D3, histamine H3 and H4 receptors and inhibition of 5-lipoxygenase. Compound 8 bound to the H3 receptor and is highlighted as the most promising multifunctional ligand with a favorable pharmacokinetic profile and one of the most potent non-peptide DNase I inhibitors. The present study demonstrates that 8-hydroxyquinoline is a structural fragment critical for DNase I inhibition in the presented series of compounds.  相似文献   

16.
Cystalysin from Treponema denticola is a pyridoxal 5′‐phosphate dependent lyase that catalyzes the formation of pyruvate, ammonia, and sulfide from cysteine. It is a virulence factor in adult periodontitis because its reaction contributes to hemolysis, which sustains the pathogen. Therefore, it was proposed as a potential antimicrobial target. To identify specific inhibitors by structure‐based in silico methods, we first validated the crystal structure of cystalysin as a reliable starting point for the design of ligands. By using single‐crystal absorption microspectrophotometry, we found that the enzyme in the crystalline state, with respect to that in solution, exhibits: 1) the same absorption spectra for the catalytic intermediates, 2) a close pKa value for the residue controlling the keto enamine ionization, and 3) similar reactivity with glycine, L ‐serine, L ‐methionine, and the nonspecific irreversible inhibitor aminoethoxyvinylglycine. Next, we screened in silico a library of 9357 compounds with the Fingerprints for Ligands and Proteins (FLAP) software, by using the three‐dimensional structure of cystalysin as a template. From the library, 17 compounds were selected and experimentally evaluated by enzyme assays and spectroscopic methods. Two compounds were found to competitively inhibit recombinant T. denticola cystalysin, with inhibition constant (Ki) values of 25 and 37 μM . One of them exhibited a minimum inhibitory concentration (MIC) value of 64 μg mL?1 on Moraxella catarrhalis ATCC 23246, which proves its ability to cross bacterial membranes.  相似文献   

17.
Inhibitors of the human enzyme dimethylarginine dimethylaminohydrolase‐1 (DDAH‐1) can raise endogenous levels of asymmetric dimethylarginine (ADMA) and lead to a subsequent inhibition of nitric oxide synthesis. In this study, N5‐(1‐imino‐2‐chloroethyl)‐L ‐ornithine (Cl‐NIO) is shown to be a potent time‐ and concentration‐dependent inhibitor of purified human DDAH‐1 (KI=1.3±0.6 μM ; kinact=0.34±0.07 min?1), with >500‐fold selectivity against two arginine‐handling enzymes in the same pathway. An activity probe is used to measure the “in cell” IC50 value (6.6±0.2 μM ) for Cl‐NIO inhibition of DDAH‐1 artificially expressed within cultured HEK293T cells. A screen of diverse melanoma cell lines reveals that a striking 50/64 (78 %) of melanoma lines tested showed increased levels of DDAH‐1 relative to normal melanocyte control lines. Treatment of the melanoma A375 cell line with Cl‐NIO shows a subsequent decrease in cellular nitric oxide production. Cl‐NIO is a promising tool for the study of methylarginine‐mediated nitric oxide control and a potential therapeutic lead compound for other indications with elevated nitric oxide production, such as septic shock and idiopathic pulmonary fibrosis.  相似文献   

18.
An integrated multidisciplinary approach that combined structure‐based drug design, multicomponent reaction synthetic approaches and functional characterization in enzymatic and cell assays led to the discovery of new kinesin spindle protein (KSP) inhibitors with antiproliferative activity. A focused library of new benzimidazoles obtained by a Ugi+Boc removal/cyclization reaction sequence generated low‐micromolar‐range KSP inhibitors as promising anticancer prototypes. The design and functional studies of the new chemotypes were assessed by computational modeling and molecular biology techniques. The most active compounds— 20 (IC50=1.49 μM , EC50=3.63 μM ) and 22 (IC50=1.37 μM , EC50=6.90 μM )—were synthesized with high efficiency by taking advantage of the multicomponent reactions.  相似文献   

19.
The emergence and spread of antibiotic‐resistant pathogens is a global public health problem. Metallo‐β‐lactamases (MβLs) such as New Delhi MβL‐1 (NDM‐1) are principle contributors to the emergence of resistance because of their ability to hydrolyze almost all known β‐lactam antibiotics including penicillins, cephalosporins, and carbapenems. A clinical inhibitor of MBLs has not yet been found. In this study we developed eighteen new diaryl‐substituted azolylthioacetamides and found all of them to be inhibitors of the MβL L1 from Stenotrophomonas maltophilia (Ki<2 μM ), thirteen to be mixed inhibitors of NDM‐1 (Ki<7 μM ), and four to be broad‐spectrum inhibitors of all four tested MβLs CcrA from Bacteroides fragilis, NDM‐1 and ImiS from Aeromonas veronii, and L1 (Ki<52 μM ), which are representative of the B1a, B1b, B2, and B3 subclasses, respectively. Docking studies revealed that the azolylthioacetamides, which have the broadest inhibitory activity, coordinate to the ZnII ion(s) preferentially via the triazole moiety, while other moieties interact mostly with the conserved active site residues Lys224 (CcrA, NDM‐1, and ImiS) or Ser221 (L1).  相似文献   

20.
The general blueprint for the design of monoamine oxidase-B (MAO-B) inhibitors has been based on two phenyl or heteronuclei linked via a spacer of appropriate length. In this study, 1-[4-(morpholin-4-yl)phenyl]-5-phenylpenta-2,4-dien-1-one (MO10) was prepared by the condensation of 4′-morpholinoacetophenone and cinnamaldehyde in basic alcoholic medium. MO10 was assessed for inhibitory activity against two human MAO isoforms, MAO-A and MAO-B. Interestingly, MO10 showed a remarkable inhibition against MAO-B with an IC50 value of 0.044 μM along with a selectivity index of 366.13. The IC50 value was better than that of lazabemide (IC50 value of 0.063 μM), which was used as a reference. Kinetics studies revealed that MO10 acted as a competitive inhibitor of MAO-B, with a Ki value of 0.0080 μM. The observation of recovery of MAO-B inhibition, compared to reference levels showed MO10 to be a reversible inhibitor. MTT assays showed that MO10 was nontoxic to normal VERO cells with an IC50 value of 195.44 μg/mL. SwissADME predicted that MO10 provided advantageous pharmacokinetics profiles for developing agents acting on the central nervous system, that is, high passive human gastrointestinal absorption and blood–brain barrier permeability. Molecular docking simulations showed that MO10 properly entered the aromatic cage formed by Y435, Y398, and FAD of the active site of MAO-B. On the basis of these results, MO10 can be considered a promising starting compound in development of agents for the treatment of various neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号