共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
3.
边缘提取是获取图像特征的基本方法之一,彩色图像提供了比灰度图像更丰富的信息,彩色图像的边缘检测日益受到人们的重视。分析了目前常见的彩色图像边缘检测算法,提出了一种将主轴分析和嵌入置信度相结合的边缘提取算法,通过实验证明,该方法充分利用了图像的彩色信息,能够有效地保护边缘细节,提高检测精度,具有良好的边缘提取效果和边缘连续性。 相似文献
4.
边缘检测是图像处理、模式识别和计算机视觉领域的重要内容.传统边缘检测方法的边缘检测效果一般.为了更好地检测出图像边缘,在传统边缘检测算法分析的基础上,提出了一种基于边缘图像融合的图像边缘检测方法.首先,对原图像进行二进小波分解得到低频子图像,然后分别对原图像和低频子图像采用直方图均衡化进行增强后用Canny算子来进行边缘检测,得到原图像和低频子图像的边缘图像,最后采用一定的融合规则将这两个边缘图像融合在一起,得到一幅完好的边缘图像.实验结果表明,这种边缘检测方法明显优于直接对原图像单独使用Canny算子或基于小波变换的边缘检测方法. 相似文献
5.
传统的边缘检测算法虽然实现简单,计算较快速,但是被检测图像较为复杂或含有噪声污染时,那些传统的边缘检测算法就很难得到理想的边缘结果。利用多尺度小波变换来检测图像的边缘是最近几年比较流行的方法,而且检测复杂图像或含噪图像的边缘比传统算法要好得多。该文提出一种在金字塔分解体系结构下利用多尺度小波变换的局部模极大值算法检测图像的边缘,并将图像分解的各层边缘信息利用小波融合算法逐个融合,以得到最终的图像边缘结果。实验结果表明,该文方法和传统的边缘检测算法相比具有定位精度高,去噪效果好等明显的优点,也能较准确地提取图像的边缘及降低计算量。 相似文献
6.
提出了一种新的图像融合算法——基于边缘检测的双树复小波图像融合算法。多聚焦图像经过双树复小波变换较好地克服了传统小波变换的平移敏感性等缺点;低频系数利用边缘信息进行融合,较好地保留了图像的细节信息,提高了融合图像的质量;高频系数则采用常见的基于区域特征的融合规则。实验结果证明,该算法能够有效地提高融合图像的清晰度,细节更为丰富。 相似文献
7.
传统Canny算法采用高斯滤波会造成图像的过度光滑,容易导致缓变边缘的丢失,而且梯度幅值的计算方法没有充分考虑到3x3邻域内周围像素对中心像素的影响.针对上述存在的问题与不足,结合小波融合技术的优势,提出了一种基于改进Canny算子与图像形态学融合的边缘检测方法,利用改进的Canny算子和图像形态学分别对图像进行边缘检测,然后应用小波融合技术把两种方法检测出来的边缘进行图像融合,得到最终的图像边缘.仿真结果表明,该算法具有较好的抗噪能力,有效地提高了边缘检测的准确性和完整性. 相似文献
8.
9.
自然场景文本检测技术已经成为计算机视觉领域重要的研究任务,在图像检索、辅助驾驶、工业检测等领域具有广泛应用.在现有的基于深度学习的自然场景文本检测方法中,非极大抑制算法在对同一个真实文本框的重复检测进行合并和筛选时,将预测框的分类置信度作为排序依据,导致那些定位更精确而分类置信度略低的预测框被抑制,从而影响检测准确率.... 相似文献
10.
11.
为解决融合图像不同程度的光谱失真问题,提出了一种结合灰色关联分析、模糊推理和IHS变换的图像融合算法。首先通过灰色关联分析和模糊推理算出全色图像的边缘点和非边缘点,得到丰富的边缘信息,然后对多光谱图像进行IHS变换,以亮度分量为依据对全色图像进行直方图匹配,再基于边缘信息对亮度分量和直方图匹配后的全色图像进行线性加权,最后通过IHS逆变换得到融合图像。为验证本文方法的有效性,与5种常用方法比较,从视觉和定量两方面进行评价,且采用降尺度评价和全分辨率评价。结果表明,该方法得到的融合图像比其他5种方法更优越。本文方法不仅提高了遥感图像的空间分辨率,也较好保留了多光谱图像的光谱信息。 相似文献
12.
13.
14.
15.
基于PCNN的灰度图像边缘检测方法 总被引:5,自引:0,他引:5
脉冲耦合神经网络(PCNN)最初由Eckhorn根据猫大脑中视觉皮层神经元的同步脉冲(SynchronousBurst)现象而提出。由于具有一系列良好的特性,PCNN在图像处理、模式识别等领域获得了广泛的应用。文献[6]根据PCNN的传播特性提出了一种利用PCNN检测二值图像边缘的有效方法,但这种方法并不能直接用于对灰度图像的边缘进行检测。由于实际处理的图像大部分为灰度图像,因而其方法的适用性是很有限的。该文提出了一种基于PCNN的灰度图像边缘检测方法,从而直接对256色灰度图像的边缘进行提取,具有较好的适用性。实验结果表明该方法是有效的。 相似文献
16.
17.
18.
多尺度形态学图像边缘检测方法 总被引:1,自引:2,他引:1
在深入地探讨数学形态学在边缘检测领域中的应用的基础上,提出了一种形态边缘检测算子,并用该算子提取图像边缘。然后进行形态结构元素尺度调整,综合各尺度下的边缘特征,得到了噪声存在条件下较为理想的图像边缘,实验证明了该算法的可行性和有效性。 相似文献