首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H.264/AVC标准增加了精度范围扩展Frext部分,提高了HD编码效率,改善了视频质量,扩大了其应用范围,同时对编解码器设计提出了更高要求.介绍Frext的基本框架和编码工具,并与JPEG2000、MPEG-2在高清视频图像压缩性能进行对比,进一步说明Frext具有好的编码性能.  相似文献   

2.
The scalable extension of the H.264 Advanced Video Coding (AVC) standard called Scalable Video Coding (SVC), or H.264/SVC, provides scalable video streams which are composed by a base layer and one or more enhancement layers. Enhancement layers may improve the temporal, the spatial or the signal-to-noise ratio resolutions of the content represented by the lower layers. One of the applications of this video coding standard is related to point-to-multipoint video distributions in both wired and wireless communication systems, where packet losses contribute to the degradation of the user’s Quality of Experience. Designed for the transmission of data over Binary Erasure Channels (BEC), Raptor codes are a Forward Error Correction (FEC) mechanism that is gaining popularity for Internet Protocol Television (IPTV) applications due to their small decoding complexity and reduced overhead. This paper evaluates the quality enhancements introduced by the integration of several H.264/SVC layers with a Raptor coding protection scheme. Our goal is to improve the distribution of video over loss prone networks in terms of rate-distortion performance by assessing several alternative packetization options and protection schemes.  相似文献   

3.
根据H.264/AVC视频编码中分数像素运动估计(FME)的算法特点,针对视频编码系统的不同具体需求,提出了FME的4种VLSI实现结构,并对这些结构的硬件利用率和运算速度进行了对比分析.  相似文献   

4.
In video communication systems, the video signals are typically compressed and sent to the decoder through an error-prone transmission channel that may corrupt the compressed signal, causing the degradation of the final decoded video quality. In this context, it is possible to enhance the error resilience of typical predictive video coding schemes using as inspiration principles and tools from an alternative video coding approach, the so-called Distributed Video Coding (DVC), based on the Distributed Source Coding (DSC) theory. Further improvements in the decoded video quality after error-prone transmission may also be obtained by considering the perceptual relevance of the video content, as distortions occurring in different regions of a picture have a different impact on the user's final experience. In this context, this paper proposes a Perceptually Driven Error Protection (PDEP) video coding solution that enhances the error resilience of a state-of-the-art H.264/AVC predictive video codec using DSC principles and perceptual considerations. To increase the H.264/AVC error resilience performance, the main technical novelties brought by the proposed video coding solution are: (i) design of an improved compressed domain perceptual classification mechanism; (ii) design of an improved transcoding tool for the DSC-based protection mechanism; and (iii) integration of a perceptual classification mechanism in an H.264/AVC compliant codec with a DSC-based error protection mechanism. The performance results obtained show that the proposed PDEP video codec provides a better performing alternative to traditional error protection video coding schemes, notably Forward Error Correction (FEC)-based schemes.  相似文献   

5.
H.264/AVC will be an essential component in emerging wireless video applications thanks to its excellent compression efficiency and network-friendly design. However, a video coding standard itself is only one component within the application and transmission environment. Its effectiveness strongly depends on the selection of appropriate modes and parameters at the encoder, at the decoder, as well as in the network. In this paper we introduce the features of the H.264/AVC coding standard that make it suitable for wireless video applications, including features for error resilience, bit rate adaptation, integration into packet networks, interoperability, and buffering considerations. Modern wireless networks provide many different means to adapt quality of service, such as forward error correction methods on different layers and end-to-end or link layer retransmission protocols. The applicability of all these encoding and network features depends on application constraints, such as the maximum tolerable delay, the possibility of online encoding, and the availability of feedback and cross-layer information. We discuss the use of different coding and transport related features for different applications, namely video telephony, video conferencing, video streaming, download-and-play, and video broadcasting. Guidelines for the selection of appropriate video coding tools, video encoder and decoder settings, as well as transport and network parameters are provided and justified. References to relevant research publications and standardization contributions are given.  相似文献   

6.
研究无线环境的视频传输是3G发展的关键.无线视频压缩编码不仅要求高压缩性能还要求适应无线网络的特征,这使得H.264/AVC成为目前惟一可选的编解码标准.文章介绍了H.264/AVC中适合用于无线视频传输的错误掩盖和抗误码的方法,讨论了基于无线网络如何应用这些方法,展望了无线环境中H.264/AVC需要的进一步改进.  相似文献   

7.
The conventional video coding approach is pragmatic in that researchers design different methods and compare their results to state-of-the-art methods. Although the H.264/AVC baseline is effective, there is a need to develop an abstract view of video coding, in the hope that new insights can be derived from the abstraction. In this paper, we propose a preliminary approach based on an AND-OR tree representation of video coding. We show that the H.264/AVC baseline can be represented as an AND-OR tree structure. Based on the AND-OR tree representation, we propose two video coding systems: one is a T+2D wavelet codec based on a motion-compensated temporal filtering (MCTF) lifting structure, and the other is the AND-OR tree implementation of the H.264/AVC baseline. We also compare the proposed systems’ coding performance in terms of the PSNR with that of H.264/AVC JM 16.2.  相似文献   

8.
The H.264/AVC standard introduces enhanced error robustness capabilities enabling resilient and reliable transmission of compressed video signals over wireless lossy packet networks. Those robustness capabilities are achieved by integrating some new error resilience tools that are essential for a proper delivery of real-time video services. Those tools include the Intra Refreshing (IR), Arbitrary Slice Ordering (ASO), Sequence Picture Parameter Sets (PPS), Redundant Slices (RS) tools and Flexible Macroblock Ordering (FMO). This paper presents an error resilient algorithm in wireless H.264/AVC streaming. The proposed method merges Reference Frame Selection (RFS), Intra Redundancy Slice and Adaptive Intra Refreshment techniques in order to prevent temporal error propagation in error-phone wireless video streaming. The coding standards only specify the decoding process and the bitstream syntax to allow considerable flexibility for the designers to optimize the encoder for coding performance improvement and complexity reduction. Performance evaluations demonstrate that the proposed encoding algorithm outperforms the conventional H.264/AVC standard. Both subjective and objective visual quality comparative study has been also carried out in order to validate the proposed approach. The proposed method can be used and integrated into H264/AVC without violating the standard.  相似文献   

9.
In this paper, a real-time configurable intelligent property (IP) core is presented for image/video decoding process in compatibility with the standard MPEG-4 Visual and the standard H.264/AVC. The inverse quantised discrete cosine and integer transform can be used to perform inverse quantised discrete cosine transform and inverse quantised inverse integer transforms which only required shift and add operations. Meanwhile, COordinate Rotation DIgital Computer iterations and compensation steps are adjustable in order to compensate for the video compression quality regarding various data throughput. The implementations are embedded in publicly available software XVID Codes 1.2.2 for the standard MPEG-4 Visual and the H.264/AVC reference software JM 16.1, where the experimental results show that the balance between the computational complexity and video compression quality is retained. At the end, FPGA synthesised results show that the proposed IP core can bring advantages to low hardware costs and also provide real-time performance for Full HD and 4K–2K video decoding.  相似文献   

10.
In this paper, a novel rate control scheme with sliding window basic unit is proposed to achieve consistent or smooth visual quality for H.264/AVC based video streaming. A sliding window consists of a group of successive frames and moves forward by one frame each time. To make the sliding window scheme possible for real-time video streaming, the initial encoder delay inherently in a video streaming system is utilized to generate all the bits of a window in advance, so that these bits for transmission are ready before their due time. The use of initial encoder delay does not introduce any additional delay in video streaming but benefits visual quality as compared to traditional one-pass rate control algorithms of H.264/AVC. Then, a Sliding Window Buffer Checking (SWBC) algorithm is proposed for buffer control at sliding window level and it accords with traditional buffer measurement of H.264/AVC. Extensive experimental results exhibit that higher coding performance, consistent visual quality and compliant buffer constraint can be achieved by the proposed algorithm.  相似文献   

11.
In H.264/advanced video coding (AVC), lossless coding and lossy coding share the same entropy coding module. However, the entropy coders in the H.264/AVC standard were original designed for lossy video coding and do not yield adequate performance for lossless video coding. In this paper, we analyze the problem with the current lossless coding scheme and propose a mode-dependent template (MD-template) based method for intra lossless coding. By exploring the statistical redundancy of the prediction residual in the H.264/AVC intra prediction modes, more zero coefficients are generated. By designing a new scan order for each MD-template, the scanned coefficients sequence fits the H.264/AVC entropy coders better. A fast implementation algorithm is also designed. With little computation increase, experimental results confirm that the proposed fast algorithm achieves about 7.2% bit saving compared with the current H.264/AVC fidelity range extensions high profile.  相似文献   

12.
Since H.264/AVC was designed mainly for lossy video coding, the entropy coding methods in H.264/AVC are not appropriate for lossless video coding. Based on statistical differences of residual data in lossy and lossless coding, we develop efficient level and zero coding methods. Therefore, we design an improved context-based adaptive variable length coding (CAVLC) scheme for lossless intra coding by modifying the relative entropy coding parts in H.264/AVC. Experimental results show that the proposed method provides approximately 6.8% bit saving, compared with the H.264/AVC FRExt high profile.   相似文献   

13.
视频编码新标准H.264/AVC中的重要技术   总被引:4,自引:0,他引:4  
张杰 《现代电子技术》2004,27(6):101-103
简要介绍了最新的视频编码标准H.264/AVC的制定情况,详细叙述了H.264/AVC基本框架中采用的几个重要技术,最后比较了H.264/AVC和已有的几个编码标准的性能,H.264/AVC的压缩性能最好。  相似文献   

14.
In this paper, a low-cost H.264/AVC video decoder design is presented for high definition television (HDTV) applications. Through optimization from algorithmic and architectural perspectives, the proposed design can achieve real-time H.264 video decoding on HD1080 video (1920 times 1088@30 Hz) when operating at 120 MHz with 320 mW power dissipation. Fabricated by using the TSMC one-poly six-metal 0.18 mum CMOS technology, the proposed design occupies 2.9times2.9 mm2 silicon area with the hardware complexity of 160K gates and 4.5K bytes of local memory  相似文献   

15.
一种面向H.264/AVC的码率控制算法   总被引:11,自引:0,他引:11       下载免费PDF全文
马思伟  高文  袁禄军  吕岩 《电子学报》2004,32(12):2024-2027
码率控制是视频编码中非常重要的技术之一,任何标准离开码率控制其应用都会受到限制.H.264/AVC是目前最新的视频编码标准,本文根据H.264/AVC编码标准的特性及其HRD部分对码率控制的要求,提出了一种新的适合H.264/AVC的码率控制算法,该算法实现了率失真优化与码率控制的结合,使得在达到码率控制的同时也能保证较高的编码效率,同时在码率控制的过程中根据HRD缓冲区状态进行位分配调整,保证了编解码缓冲区既不上溢又不下溢.该算法作为技术提案已被H.264/AVC接受,并集成到H.264/AVC的校验模型软件中.  相似文献   

16.
Recently the latest video coding standard H.264/AVC is widely used for the mobile and low bitrate video codec in the various multimedia terminals. On the other hand, the MPEG-2 MP@HL codec has become the center of digital video contents since it is the standard codec for the Digital TV (DTV). To provide the bridge between the contents in MPEG-2 and mobile terminals, the transcoding of MPEG-2 contents into H.264/AVC format is an inevitable technology in the digital video market. The main bottleneck in the process lies in the computational complexity. In H.264/AVC, the variable block size (VBS) mode decision (MD) is used in the Interframe for the improved performance in the motion compensated prediction. For the macroblock (MB) which cannot be accurately predicted with one motion vector (MV), it is partitioned into smaller blocks and predicted with different MVs. In addition, SKIP and Intra modes are also permitted in the Interframe MD of H.264/AVC to further ameliorate the encoding performance. With the VBS MD technology, the Inter prediction accuracy can be improved significantly. However, the incidental side-effect is the high computational complexity. In this paper, we propose a fast Interframe MD algorithm for MPEG-2 to H.264/AVC transcoding. The relationships between SKIP and Intra modes are detected at first to map these two kinds of modes directly from MPEG-2 to H.264/AVC. And then the MB activity will be scaled by the residual DCT energy obtained from the MPEG-2 decoding process to estimate the block sizes of the MB mode for H.264/AVC Interframe MD. In our proposed method, the original redundant candidate modes can be eliminated effectively, resulting in the reduction of the computational complexity. It can reduce about 85% Rate-to-Distortion Cost (RDCost) computing and 45% entire processing time compared with the well-known cascaded transcoder while maintaining the video quality.  相似文献   

17.
The powerful H.264/AVC video coder involves a large encoding computational cost than the existing video standards due mainly to the motion-compensated estimation scheme based on a full search of multiple reference frames in the sequence. This strategy decreases the residual errors of the predicted frames and may improve the performance of the video coder. However a great number of computations are usually wasted without improving significantly the quality of the decoded video mostly in videoconferencing applications. To reduce the encoding computational load and preserve the performance of the video coder, this paper proposes to substitute the motion-compensated estimation method implemented in H.264/AVC by a temporal spline interpolation. Simulations on several test sequences show that important encoding saving times are achieved with a competitive quality of the decoded video compared to the exhaustive search of multiple reference frames in the H.264/AVC video coder.  相似文献   

18.
H.264/AVC在3G移动通信中的应用   总被引:1,自引:0,他引:1  
H.264/AVC是目前最新,也是性能最优异的国际视频压缩编码标准。在相同的视频质量下,H.264/AVC可以比MPEG-4(SP)节省大约一半的带宽,同时还具有更好的网络适应性和传输健壮性,在3G移动通信系统带宽资源紧张、通信环境恶劣的情况下,H.264/AVC应该是目前最合适的选择。从压缩效率、网络适应性和健壮性3个方面分析了H.264/AVC的新技术,并讨论了它们在3G移动通信中的应用。  相似文献   

19.
Since context-based adaptive binary arithmetic coding (CABAC) as the entropy coding method in H.264/AVC was originally designed for lossy video compression, it is inappropriate for lossless video compression. Based on the fact that there are statistical differences of residual data between lossy and lossless video compression, we propose an efficient differential pixel value coding method in CABAC for H.264/AVC lossless video compression. Considering the observed statistical properties of the differential pixel value in lossless coding, we modified the CABAC encoding mechanism with the newly designed binarization table and the context-modeling method. Experimental results show that the proposed method achieves an approximately 12% bit saving, compared to the original CABAC method in the H.264/AVC standard.  相似文献   

20.
新一代运动图像压缩标准H.264/AVC   总被引:3,自引:0,他引:3  
H.264/AVC是ISO/IECMPEG与ITU-TVCEG共同制订的新一代图像编码标准,它具有更高的压缩性能。文章介绍H.264/AVC图像编解码系统的实现过程,并对其采用的新技术进行描述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号