首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 925 毫秒
1.
Since their discovery, protein tyrosine phosphatases have been speculated to play a role in tumor suppression because of their ability to antagonize the growth-promoting protein tyrosine kinases. Recently, a tumor suppressor from human chromosome 10q23, called PTEN or MMAC1, has been identified that shares homology with the protein tyrosine phosphatase family. Germ-line mutations in PTEN give rise to several related neoplastic disorders, including Cowden disease. A key step in understanding the function of PTEN as a tumor suppressor is to identify its physiological substrates. Here we report that a missense mutation in PTEN, PTEN-G129E, which is observed in two Cowden disease kindreds, specifically ablates the ability of PTEN to recognize inositol phospholipids as a substrate, suggesting that loss of the lipid phosphatase activity is responsible for the etiology of the disease. Furthermore, expression of wild-type or substrate-trapping forms of PTEN in HEK293 cells altered the levels of the phospholipid products of phosphatidylinositol 3-kinase and ectopic expression of the phosphatase in PTEN-deficient tumor cell lines resulted in the inhibition of protein kinase (PK) B/Akt and regulation of cell survival.  相似文献   

2.
PTEN/MMAC1/TEP1 is a tumor suppressor that possesses intrinsic phosphatase activity. Deletions or mutations of its encoding gene are associated with a variety of human cancers. However, very little is known about the molecular mechanisms by which this important tumor suppressor regulates cell growth. Here, we show that PTEN expression potently suppressed the growth and tumorigenicity of human glioblastoma U87MG cells. The growth suppression activity of PTEN was mediated by its ability to block cell cycle progression in the G1 phase. Such an arrest correlated with a significant increase of the cell cycle kinase inhibitor p27(KIP1) and a concomitant decrease in the activities of the G1 cyclin-dependent kinases. PTEN expression also led to the inhibition of Akt/protein kinase B, a serine-threonine kinase activated by the phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway. In addition, the effect of PTEN on p27(KIP1) and the cell cycle can be mimicked by treatment of U87MG cells with LY294002, a selective inhibitor of PI 3-kinase. Taken together, our studies suggest that the PTEN tumor suppressor modulates G1 cell cycle progression through negatively regulating the PI 3-kinase/Akt signaling pathway, and one critical target of this signaling process is the cyclin-dependent kinase inhibitor p27(KIP1).  相似文献   

3.
PTEN/MMAC1 is a major new tumor suppressor gene that encodes a dual-specificity phosphatase with sequence similarity to the cytoskeletal protein tensin. Recently, we reported that PTEN dephosphorylates focal adhesion kinase (FAK) and inhibits cell migration, spreading, and focal adhesion formation. Here, the effects of PTEN on cell invasion, migration, and growth as well as the involvement of FAK and p130 Crk-associated substrate (p130Cas) were investigated in U87MG glioblastoma cells missing PTEN. Cell invasion, migration, and growth were down-regulated by expression of phosphatase-active forms of PTEN but not by PTEN with an inactive phosphatase domain; these effects were correlated with decreased tyrosine phosphorylation levels of FAK and p130Cas. Overexpression of FAK concomitant with PTEN resulted in increased total tyrosine phosphorylation levels of FAK and p130Cas and effectively antagonized the effects of PTEN on cell invasion and migration and partially on cell growth. Overexpression of p130Cas increased total tyrosine phosphorylation levels of p130Cas without affecting those of FAK; however, although p130Cas could reverse PTEN inhibition of cell invasion and migration, it did not rescue cell growth in U87MG cells. In contrast to FAK, p130Cas could not be shown to interact with PTEN in cells, and it was not dephosphorylated directly by PTEN in vitro. These results suggest important roles of PTEN in the phenotype of tumor progression, and that the effects of PTEN on cell invasion, migration, and growth are mediated by distinct downstream pathways that diverge at the level of FAK.  相似文献   

4.
5.
The PTEN/MMAC1 phosphatase is a tumor suppressor gene implicated in a wide range of human cancers. Here we provide biochemical and functional evidence that PTEN/MMAC1 acts a negative regulator of the phosphoinositide 3-kinase (PI3-kinase)/Akt pathway. PTEN/MMAC1 impairs activation of endogenous Akt in cells and inhibits phosphorylation of 4E-BP1, a downstream target of the PI3-kinase/Akt pathway involved in protein translation, whereas a catalytically inactive, dominant negative PTEN/MMAC1 mutant enhances 4E-BP1 phosphorylation. In addition, PTEN/MMAC1 represses gene expression in a manner that is rescued by Akt but not PI3-kinase. Finally, higher levels of Akt activation are observed in human prostate cancer cell lines and xenografts lacking PTEN/MMAC1 expression when compared with PTEN/MMAC1-positive prostate tumors or normal prostate tissue. Because constitutive activation of either PI3-kinase or Akt is known to induce cellular transformation, an increase in the activation of this pathway caused by mutations in PTEN/MMAC1 provides a potential mechanism for its tumor suppressor function.  相似文献   

6.
The elevation of cyclic AMP (cAMP) levels in the cell downregulates the activity of the Raf-1 kinase. It has been suggested that this effect is due to the activation of cAMP-dependent protein kinase (PKA), which can directly phosphorylate Raf-1 in vitro. In this study, we confirmed this hypothesis by coexpressing Raf-1 with the constitutively active catalytic subunit of PKA, which could fully reproduce the inhibition previously achieved by cAMP. PKA-phosphorylated Raf-1 exhibits a reduced affinity for GTP-loaded Ras as well as impaired catalytic activity. As the binding to GTP-loaded Ras induces Raf-1 activation in the cell, we examined which mechanism is required for PKA-mediated Raf-1 inhibition in vivo. A Raf-1 point mutant (RafR89L), which is unable to bind Ras, as well as the isolated Raf-1 kinase domain were still fully susceptible to inhibition by PKA, demonstrating that the phosphorylation of the Raf-1 kinase suffices for inhibition. By the use of mass spectroscopy and point mutants, PKA phosphorylation site was mapped to a single site in the Raf-1 kinase domain, serine 621. Replacement of serine 621 by alanine or cysteine or destruction of the PKA consensus motif by changing arginine 618 resulted in the loss of catalytic activity. Notably, a mutation of serine 619 to alanine did not significantly affect kinase activity or regulation by activators or PKA. Changing serine 621 to aspartic acid yielded a Raf-1 protein which, when expressed to high levels in Sf-9 insect cells, retained a very low inducible kinase activity that was resistant to PKA downregulation. The purified Raf-1 kinase domain displayed slow autophosphorylation of serine 621, which correlated with a decrease in catalytic function. The Raf-1 kinase domain activated by tyrosine phosphorylation could be downregulated by PKA. Specific removal of the phosphate residue at serine 621 reactivated the catalytic activity. These results are most consistent with a dual role of serine 621. On the one hand, serine 621 appears essential for catalytic activity; on the other hand, it serves as a phosphorylation site which confers negative regulation.  相似文献   

7.
8.
RPTP mu is a recently described receptor-like protein tyrosine phosphatase (PTP), the ectodomain of which mediates homophilic cell-cell adhesion. The cytoplasmic part contains two homologous PTP-like domains and a juxtamembrane region that is about twice as large as in other receptor-like PTPs. The entire 80-kDa cytoplasmic part of human RPTP mu was expressed in insect Sf9 cells and its enzymatic activity was characterized after purification to electrophoretic homogeneity. In addition, the effects of deletion and point mutations were analyzed following expression in Escherichia coli cells. The purified cytoplasmic part of RPTP mu displays high activity toward tyrosine-phosphorylated, modified lysozyme (Vmax 4500 nmol min-1 mg-1) and myelin basic protein (Vmax 8500 nmol min-1 mg-1) but negligible activity toward tyrosine-phosphorylated angiotensin or the nonapeptide, EDNDpYINASL, that serves as a good substrate for protein tyrosine phosphatase PTP1B. This suggests that RPTP mu and PTP1B have distinct substrate specificities. Catalytic activity is independent of Ca2+ (up to 1 mM) but is strongly inhibited by Zn2+, Mn2+, vanadate, phenylarsenic oxide, and heparin. The first of the two catalytic domains is 5-10 times less active than the expressed catalytic region containing both domains. Mutation of Cys 1095 to Ser in the first catalytic domain abolishes enzymatic activity when analyzed following expression in either E. coli or mammalian COS cells. Deletion of the first 53 amino acids from the juxtamembrane region reduces catalytic activity about 2-fold.  相似文献   

9.
The c-erbB-2 gene encodes a M(r) 185,000 tyrosine kinase receptor (p185) with extensive homology to the epidermal growth factor receptor. We have conducted mechanistic studies with several anti-p185 monoclonal antibodies (TAb 250, -255, -257, -260, and -263) directed against the extracellular domain of p185 utilizing the SKBR-3, BT-474, and SKOV-3 cancer cell lines. Several of these antibodies exhibited ligand-mimicking properties: they induced tyrosine phosphorylation of p185; increased the catalytic activity of the receptor substrate phospholipase C-gamma 1; exhibited time- and pH-dependent internalization; induced receptor down-regulation; and increased the turnover of the p185 protein delta 3-fold. However, there was not a universal correlation between the antibody-mediated ligand-like effects and growth inhibition. TAb 250 inhibited BT-474 cells but did not alter p185 phosphotyrosine content or increase receptor turnover in these cells. TAb 260 increased p185 protein turnover but did not affect proliferation of the SKOV-3 cell line. Furthermore, blockade of TAb 250-induced receptor phosphorylation with the tyrosine kinase inhibitor tyrphostin 50864-2 did not abrogate TAb 250-mediated growth inhibition of SKBR-3 cells. These data suggest that ligand-like effects mediated by p185 antibodies are not critical for the growth inhibition of c-erbB-2-overexpressing carcinoma cells.  相似文献   

10.
11.
Pleckstrin, the prototypic protein containing two copies of the pleckstrin homology domain, is a prominent substrate of protein kinase C in platelets and neutrophils. Both cell types have p85 subunit-containing phosphoinositide 3-kinase (p85/PI3K) and non-p85-containing PI3K (PI3Kgamma) that is activated by betagamma subunits of heterotrimeric GTP-binding proteins. We have shown that a PI3K product, phosphatidylinositol (PI) 3,4,5-trisphosphate, promotes pleckstrin phosphorylation in platelets. Since pleckstrin homology domains are thought to interact with Gbetagamma heterodimers and/or PI(4,5)P2, we have examined the effects of recombinant pleckstrins on platelet PI3Kgamma and p85/PI3K activities. Depending upon its phosphorylation/charged state, pleckstrin inhibits PI3Kgamma, but not p85/PI3K. Pleckstrin-mediated inhibition of PI3Kgamma is overcome by excess Gbetagamma and is restricted to PI(4,5)P2 as substrate, i.e. pleckstrin does not inhibit phosphorylation of PI()P or PI. Consistent with this, activation of protein kinase C by exposure of platelets to beta-phorbol diester (to increase endogenous pleckstrin phosphorylation) prior to platelet lysis causes inhibition of Gbetagamma-stimulatable PI3K activity only with respect to PI(4,5)P2 substrate. This phosphopleckstrin-mediated inhibition is overcome by increasing concentrations of Gbetagamma. We propose that phosphorylation of pleckstrin may constitute an important inhibitory mechanism for PI3Kgamma-mediated cell signaling.  相似文献   

12.
The loss of large segments or an entire copy of chromosome 10 is the most common genetic alteration in human glioblastomas. To address the biological and molecular consequences of this chromosomal alteration, we transferred a human chromosome 10 into a glioma cell clone devoid of an intact copy. The hybrid cells exhibited an altered cellular morphology, a decreased saturation density, and a suppression of both anchorage-independent growth and tumor formation in nude mice. The hybrids also expressed the recently identified candidate tumor suppressor gene MMAC1/PTEN. To further identify gene products that may be involved in glioma progression, a subtractive hybridization was performed between the human glioblastoma cells and the phenotypically suppressed hybrid cells to identify differentially expressed gene products. Sixty-one clones were identified, with nine clones being preferentially expressed in the hybrid cells. Four cDNA clones represented markers of differentiation in glial cells. Two cDNA clones shared homology with platelet derived growth factor-alpha and the insulin receptor, respectively, both genes previously implicated in glioma progression. A novel gene product that was expressed predominantly in the brain, but which did not map to chromosome 10, was also identified. This clone contained an element that was also present in three additional clones, two of which also exhibited differential expression. Consequently, the presence of a functional copy of chromosome 10 in the glioma cells results in differential expression of a number of gene products, including novel genes as well as those associated with glial cell differentiation.  相似文献   

13.
The c-Raf-1 kinase is converted into an oncoprotein by functional inactivation of its NH2-terminal regulatory domain and into a dominant-interfering protein by mutations that eliminate catalytic activity. This report describes a systematic charged residue-to-alanine scanning mutagenesis of the ATP-binding subdomain of the c-raf-1 gene. Two temperature-sensitive mutations were found, which were then used to construct both conditionally active and conditionally dominant-defective alleles. Stable cell lines overexpressing both types of mutants were isolated, and their phenotypes were examined. Ectopic expression of Raf-1 activity in quiescent cells was not sufficient to elicit S-phase entry, but the Raf signal could be efficiently complemented by the progression factor insulin-like growth factor I. The results point to a function of Raf-1 in the platelet-derived growth factor and epidermal growth factor pathways, leading to the establishment of competence for cell cycle entry. Ectopic expression of the dominant-defective activity in quiescent cells efficiently blocked entry into S phase. Effects of the dominant-defective protein could be detected minutes after the shift to the restrictive conditions and resulted in the rapid down-regulation of the mitogen-activated protein kinase pathway. Taken together, the phenotypes of the conditionally active and conditionally dominant-defective mutants point to a critical function of Raf-1 at very early times during exit from G0 and entry into G1.  相似文献   

14.
The Saccharomyces cerevisiae protein MSS4 is essential and homologous to mammalian phosphatidylinositol-4-phosphate (PI(4)P) 5-kinases. Here, we demonstrate that MSS4 is a lipid kinase. MSS4 has dual substrate specificity in vitro, converting PI(4)P to PI(4, 5)P2 and to a lesser extent PI(3)P to PI(3,4)P2; no activity was detected with PI or PI(5)P as a substrate. Cells overexpressing MSS4 contain an elevated level specifically of PI(4,5)P2, whereas mss4 mutant cells have only approximately 10% of the normal amount of this phosphorylated phosphoinositide. Furthermore, cells lacking MSS4 are unable to form actin cables and to properly localize their actin cytoskeleton during polarized cell growth. Overexpression of RHO2, encoding a Rho-type GTPase involved in regulation of the actin cytoskeleton, restores growth and polarized distribution of actin in an mss4 mutant. These results suggest that MSS4 is the major PI(4)P 5-kinase in yeast and provide a link between phosphoinositide metabolism and organization of the actin cytoskeleton in vivo.  相似文献   

15.
16.
PTEN/MMAC1 is a tumor suppressor gene that is mutated in a variety of cancers. PTEN encodes a phosphatase that recognizes phosphoprotein substrates and the phospholipid, phosphatidylinositol-3,4,5-triphosphate. PTEN inhibited cell growth and/or colony formation in all of the epithelial lines tested with one exception. The decrease in cellular proliferation was associated with an induction of apoptosis and an inhibition of signaling through the phosphatidylinositol 3'-kinase pathway. Akt/protein kinase B, a gene whose antiapoptotic function is regulated by phosphatidylinositol-3,4,5-triphosphate, was able to rescue cells from PTEN-dependent death. PTEN, therefore, appears to suppress tumor growth by regulating phosphatidylinositol 3'-kinase signaling.  相似文献   

17.
Membrane binding of urokinase type plasminogen activator (u-PA) is thought to play a pivotal role in connective tissue remodeling and invasive processes. We compare the ability of different matrix-metalloproteinases involved in connective tissue turnover to cleave pro-urokinase type plasminogen activator between the catalytic domain and the receptor binding part to investigate a potential role for matrix-metalloproteinases in the regulation of membrane-associated proteolytic activity. We employed several forms of human stromelysin-1 (full length, C-truncated, and recombinant catalytic domain), rabbit C-truncated stromelysin-1, the human gelatinases A and B and the human catalytic domain of neutrophil collagenase. The gelatinases and the collagenase did not separate the receptor binding domain of pro-urokinase type plasminogen activator from the catalytic domain, whereas all stromelysin-1 forms cleaved the glutamic acid 143-leucine 144 bond of pro-urokinase type plasminogen activator. This reaction could be inhibited by specific inhibitors of matrix metalloproteinases and was not affected by inhibitors of serine proteinases. The M(r) 31000 cleavage product with leucine 144 as N-terminus displayed no proteolytic activity towards the pro-urokinase type plasminogen activator substrate pyroGlu-Gly-Arg-pNA-HCI (S2444), but it could be activated by an additional treatment with plasmin. Comparison between full length stromelysin-1 and its C-truncated forms, showed that both exhibited the same cleavage properties towards pro-urokinase type plasminogen activator. Thus, the cleavage of pro-urokinase type plasminogen activator by stromelysin-1 is not influenced by the presence or absence of the C-terminal domain. The recombinant catalytic domain of MMP-3 generated pro-urokinase type plasminogen activator, whereas incubation of pro-urokinase type plasminogen activator with the native forms of human or rabbit stromelysin-1 led to a moderate activation of pro-uPA due to an additional cleavage that is catalyzed by a serine proteinase.  相似文献   

18.
The retinoblastoma (pRB) family of proteins includes three proteins known to suppress growth of mammalian cells. Previously we had found that growth suppression by two of these proteins, p107 and p130, could result from the inhibition of associated cyclin-dependent kinases (cdks). One important unresolved issue, however, is the mechanism through which inhibition occurs. Here we present in vivo and in vitro evidence to suggest that p107 is a bona fide inhibitor of both cyclin A-cdk2 and cyclin E-cdk2 that exhibits an inhibitory constant (Ki) comparable to that of the cdk inhibitor p21/WAF1. In contrast, pRB is unable to inhibit cdks. Further reminiscent of p21, a second cyclin-binding site was mapped to the amino-terminal portions of p107 and p130. This amino-terminal domain is capable of inhibiting cyclin-cdk2 complexes, although it is not a potent substrate for these kinases. In contrast, a carboxy-terminal fragment of p107 that contains the previously identified cyclin-binding domain serves as an excellent kinase substrate although it is unable to inhibit either kinase. Clustered point mutations suggest that the amino-terminal domain is functionally important for cyclin binding and growth suppression. Moreover, peptides spanning the cyclin-binding region are capable of interfering with p107 binding to cyclin-cdk2 complexes and kinase inhibition. Our ability to distinguish between p107 and p130 as inhibitors rather than simple substrates suggests that these proteins may represent true inhibitors of cdks.  相似文献   

19.
Protein phosphatase 1 (PP1) is found in the cell nucleus and has been implicated in several aspects of nuclear function. We report here the cloning and initial characterization of a novel protein approximately named phosphatase 1 nuclear targeting subunit (PNUTS). This protein interacts with PP1 in a yeast two-hybrid assay, is found in a stable complex with PP1 in mammalian cell lysates, and exhibits a potent modulation of PP1 catalytic activity toward exogenous substrate in vitro. PNUTS is a ubiquitously expressed protein that exhibits a discreet nuclear compartmentalization and is colocalized with chromatin at distinct phases during mitosis. The subcellular localization of PP1 and the activity toward substrates involved in many aspects of cell physiology have previously been shown to be regulated by association with noncatalytic targeting subunits. The properties of PNUTS are consistent with its role as a targeting subunit for the regulation of nuclear PP1 function.  相似文献   

20.
PTPH1 is a human protein-tyrosine phosphatase with homology to the band 4.1 superfamily of cytoskeleton-associated proteins. Here, we report the purification and biochemical characterization of this enzyme from baculovirus-infected insect cells. The purified protein exhibited an apparent M(r) of 120,000 on SDS gels. The native enzyme dephosphorylated both myelin basic protein (MBP) and reduced, carboxamidomethylated, and maleylated lysozyme (RCML) but was over 5-fold more active on MBP. The Km values for the two substrates were similar (1.45 microM for MBP and 1.6 microM for RCML). Phosphorylation of PTPH1 by protein kinase C in vitro resulted in a decrease in Km but had no effect on Vmax. Removal of the NH2-terminal band 4.1 homology domain of PTPH1 by limited trypsin cleavage stimulated dephosphorylation of RCML but inhibited its activity toward MBP. The dephosphorylation of RCML by full-length PTPH1 was enhanced up to 6-fold by unphosphorylated MBP and increasing ionic strength up to 0.2 M NaCl, whereas trypsinized preparations of PTPH1 containing the isolated catalytic domain were unaffected. These results suggest that in addition to a potential role in controlling subcellular localization, the NH2-terminal band 4.1 homology domain of PTPH1 may exert a direct effect on catalytic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号