首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythropoietin (EPO) is a hormone, as well as a hematopoietic growth factor, that specifically regulates the proliferation and differentiation of erythroid progenitor cells. Although the membrane-bound receptor for EPO has no intrinsic kinase activity, it triggers the activation of protein kinases via phospholipases A2, C, and D. A cascade of serine and threonine kinases, including Raf-1, MAP kinase and protein kinase C (PKC) is activated following tyrosine phosphorylation. In this study, we have examined whether changes in nuclear PKC and 1,2-diacylglycerol (DAG) are induced following EPO treatment of the murine target cell line, B6SUt.EP. Western blot analysis using isoform-specific antibodies demonstrated the presence of PKC beta II, but not PKC alpha, beta I, gamma, epsilon, delta, eta, or zeta in the nuclei of cells stimulated with EPO. The increase in nuclear beta II levels was accompanied by an immediate rise in DAG mass levels with both of the increases peaking by 1 min. These rapid increases in nuclear DAG and PKC beta II expression suggest a mechanism for EPO-induced changes in gene expression necessary for cell proliferation.  相似文献   

2.
A possible regulatory mechanism of protein kinase C (PKC) in the chondrogenesis of chick limb bud mesenchymes has been investigated. Inhibition or down-regulation of PKC resulted in the activation of a mitogen-activated protein kinase subtype Erk-1 and the inhibition of chondrogenesis. On the other hand, inhibition of Erk-1 with PD98059 enhanced chondrogenesis and relieved PKC-induced blockage of chondrogenesis. Erk-1 inhibition, however, did not affect expression and subcellular distribution of PKC isoforms expressed in mesenchymes nor cell proliferation. The results suggest that PKC regulates chondrogenesis by modulating Erk-1 activity. Inhibition or depletion of PKC inhibited proliferation of chondrogenic competent cells, and Erk-1 inhibition did not affect PKC modulation of cell proliferation. However, PKC-induced modulation of expression of cell adhesion molecules involved in precartilage condensation was reversed by the inhibition of Erk-1. Expression of N-cadherin was detected at the early period of chondrogenesis. Inhibition or depletion of PKC induced sustained expression of N-cadherin, and Erk-1 inhibition blocked the effects of PKC modulation. The expression of integrin alpha5 beta1 and fibronectin was found to be increased transiently during chondrogenesis. Depletion or inhibition of PKC caused a continuous increase of the expression of these molecules throughout the culture period, and Erk-1 inhibition abolished the modulating effects of PKC. Because reduction of the examined cell adhesion molecule expression is a prerequisite for the progression of chondrogenesis after cell condensation, our results indicate that PKC regulates chondrogenesis by modulating expression of these molecules via Erk-1 signaling.  相似文献   

3.
BP Bode  N Reuter  JL Conroy  WW Souba 《Canadian Metallurgical Quarterly》1998,124(2):260-7; discussion 267-8
BACKGROUND: Human hepatoma cells extract glutamine at rates severalfold greater than normal hepatocytes through a high-affinity transporter encoded by the ATB0 gene, which contains two putative phosphorylation sites for protein kinase C (PKC). The studies presented here were undertaken to determine whether System B0-mediated glutamine uptake regulates hepatoma growth and whether PKC regulates the activity of this transporter. METHODS: SK-Hep cells were treated with the PKC activator phorbol 12-myristate 13-acetate (PMA) and the initial-rate transport of glutamine and other nutrients measured at specific times thereafter. Growth rates were monitored during culture +/- PMA or an excess of system B0 substrates relative to glutamine. RESULTS: PMA treatment exerted a rapid (half-life approximately 15 minutes) concentration-dependent inhibition of glutamine uptake rates to 50% of control values via a posttranslational mechanism that decreased transporter maximum velocity. This effect persisted after 24 hours and was abrogated by the PKC inhibitor staurosporine. PMA also significantly decreased amino acid transport System y+ and System L activities but no System A. Chronic treatment with PMA (PKC depletion) inhibited SK-Hep growth, as did attenuation of System B0-mediated glutamine uptake with other B0 substrates. CONCLUSIONS: System B0-mediated glutamine uptake regulates hepatoma cell growth, whereas PKC influences both processes.  相似文献   

4.
It is well established that an independent inositide cycle is present within the nucleus, where it is involved in the control of cell proliferation and differentiation. Previous results have shown that when Swiss 3T3 cells are treated with insulin-like growth factor-I (IGF-I) a rapid and sustained increase in mass of diacylglycerol (DAG) occurs within the nuclei, accompanied by a decrease in the levels of both phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. However, it is unclear whether or not other lipids could contribute to this prolonged rise in DAG levels. We now report that the IGF-I-dependent increase in nuclear DAG production can be inhibited by the specific phosphatidylinositol phospholipase C inhibitor 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine or by neomycin sulfate but not by the purported phosphatidylcholine-phospholipase C specific inhibitor D609 or by inhibitors of phospholipase D-mediated DAG generation. Treatment of cells with 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine or neomycin sulfate inhibited translocation of protein kinase C-alpha to the nucleus. Moreover, exposure of cells to 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine, but not to D609, dramatically reduced the number of cells entering S-phase upon stimulation with IGF-I. These results suggest that the only phospholipase responsible for generation of nuclear DAG after IGF-I stimulation of 3T3 cells is PI-PLC. When this activity is inhibited, neither DAG rise is seen nor PKC-alpha translocation to the nucleus occurs. Furthermore, this PI-PLC activity appears to be essential for the G0/G1 to S-phase transition.  相似文献   

5.
Fas (CD95/APO-1) is a transmembrane protein of the TNF/neuron growth factor receptor family. Ligation of Fas by specific Abs or Fas ligand (FasL/CD95 ligand) induces rapid apoptotic cell death in a variety of cell types. Despite progress in understanding the death signals transduced from Fas, very little is known with regard to the mechanisms by which Fas expression is regulated. Using our previously established murine T cell hybridoma model A1.1, we show that specific protein kinase C (PKC) inhibitors could block activation-induced Fas expression and apoptosis. The activation of PKC with PMA or 1-oleoyl-2-acetyl-sn-glycerol could mimic the TCR signal by inducing the expression of Fas but not FasL. PKC-dependent Fas expression was also observed in several murine and human tumor cell lines. Since the inhibition of Ca2+ redistribution by an inhibitor of intracellular Ca2+ mobilization, 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride, inhibited TCR-induced FasL but not Fas, the expression of Fas appears to be independent of Ca2+ mobilization. Significantly, expression of the newly identified Fas-regulatory gene, TDAG51, was found to be dependent upon the activity of PKC. PKC activation only induced Fas expression in cells expressing wild-type TDAG51. Thus, Fas expression is likely mediated by PKC through TDAG51.  相似文献   

6.
In this work we take under examination the aromatic polycyclic hydrocarbons (APHs) as a class of organic micropolluting agents which have a considerable impact in the life and in the working environment of man. The authors decided to expressly start this study by proposing the changes pattern cause by APHs according to their chemical-physical reactivity characteristics, in order to realise a qualitative and quantitative evaluation of their toxicologic impact. Therefore, the specific aspects of chemism (reactions of substitution, aromatic electrophilia and addition) of these organic micropolluting agents are studied with particular reference to their chemical structure and to the properties which are the main important cause of every effect of diffusion both in productive environments and of toxicity in the human body. In this way, come toxicologic risk sources, responsible, within some technological cycles for the APHs emission in the working areas, are identified, shown and evaluated; carrying factors, not much investigated till now, which represent a synergic effect to the introduction and absorption of the APHs by the human body. For the necessity of a useful environmental monitoring which could be applied to different matrices, the techniques and the methods useful for carrying out sampling and analytical evaluation in a correct way, are introduced as well. Lastly, the Authors stress on the engagement and discuss the measures of prevention and protection, technically performable on the basis of the chemico-physical-granulometric properties of APHs, with the goal of safeguarding at best health of people occupationally exposed.  相似文献   

7.
8.
Protein kinase C (PKC) acutely increases calcium currents in Aplysia bag cell neurons by recruiting calcium channels different from those constitutively active in the plasma membrane. To study the mechanism of PKC regulation we previously identified two calcium channel alpha1-subunits expressed in bag cell neurons. One of these, BC-alpha1A, is localized to vesicles concentrated primarily in somata and growth cones. We used antibodies to BC-alpha1A to analyze its expression in the bag cell neurons of juvenile Aplysia at a developmental stage at which PKC-sensitive calcium currents have previously been shown to be low. We find that vesicular BC-alpha1A staining is generally reduced in juvenile bag cell neurons but that its expression level can vary among juvenile animals. In 17 bag cell clusters examined, the percentage of neurons that displayed punctate alphaBC-alpha1A staining ranged from 0 to 85%. Sampling of calcium currents from cells of the same clusters by whole cell patch-clamp techniques revealed that the PKC-sensitive calcium current density is significantly correlated with the degree of vesicular staining. In contrast, no correlation of basal calcium current levels with aBC-alpha1A staining was found. These results strongly suggest that BC-alpha1A, a member of the ABE-subfamily of calcium channels, carries the PKC-sensitive calcium current in bag cell neurons. They are consistent with a model in which PKC recruits channels from the vesicular pool to the plasma membrane.  相似文献   

9.
BACKGROUND: Macrophages pretreated in vitro with endotoxin (LPSp) secrete less tumor necrosis factor (TNF) in response to a second LPS activating (LPSa) stimulus. Protein kinase C (PKC) is required for TNF secretion in a macrophage stimulated with LPSa. In these experiments we examined the role of PKC in TNF signal transduction in naive and tolerant macrophages. METHODS: Murine macrophages were cultured +/- LPSp for 24 hours. Cultures were washed and treated for 1 hour with PKC inhibitors or phorbol myristate acetate (PMA), a direct PKC activator. Cells were then stimulated with a range of LPSa for 6 hours, and TNF was determined by bioassay. RESULTS: LPSa-stimulated TNF secretion by nontolerant macrophages was inhibited by LPSp in the absence of PMA. PKC inhibitors decreased TNF by naive macrophages and exaggerated inhibition in tolerant cells. Depletion of PKC by 24 hours of PMA decreased TNF production by both naive and tolerant macrophages. PKC activation with PMA 1 hour before LPSa augmented TNF secretion in naive cells and reversed TNF inhibition of tolerant cells. CONCLUSIONS: Direct PKC activation with PMA restored TNF secretion in LPS-tolerant macrophages. Endotoxin tolerance may alter the LPSa signal transduction pathway between the LPS receptor and PKC activation.  相似文献   

10.
Activation of protein kinase C is a key event in the transduction of receptor-mediated extracellular signals. Little is known about the role of protein kinase C in the microcirculation of the brain. In this study, we examined protein kinase C in isolated cerebral microvessels. A technique for partial purification of protein kinase C from microvessels was employed, using Q-Sepharose batch adsorption and single-step salt elution in microfuge tubes. This procedure greatly reduced variability and increased protein kinase C specific activity in both the cytosolic and particulate fractions by nearly 50-fold. The identity of the enzyme was confirmed by its inhibition by staurosporine and bisindolylmaleimide and by its translocation in response to phorbol ester. The level of protein kinase C was assessed by [3H]phorbol ester binding and the endogenous substrates evaluated by in vitro phosphorylation studies. Finally, western blot analysis of protein kinase C isoforms indicated that the beta-isoform was present in both cytosolic and particulate fractions. The alpha-isoform was present at low levels in the cytosolic fraction, whereas the gamma-isoform was not detected.  相似文献   

11.
Recent observations suggest that diacylglycerol kinase (DGK) is one of the key enzymes involved in the regulation of signal transduction. It attenuates protein kinase C activity and cell cycle progression of T-lymphocytes, through controlling the intracellular levels of the second messengers, diacylglycerol and phosphatidic acid. To date, eight DGK isozymes containing characteristic zinc finger structures in common have been identified. Type I DGKs (alpha, beta and gamma) contain EF-hand motifs that contribute to the calcium-dependent activities of this type of DGK. A pleckstrin homology and/or an EPH C-terminal tail homology domains are found in type II isozymes (DGK delta and eta). DGK epsilon represents a third type of DGK that selectively phosphorylates arachidonate-containing diacylglycerol. DGK zeta (type IV) and DGK theta (type V) contain four tandem ankyrin repeats and a Ras-associating domain, respectively.  相似文献   

12.
Though described in 1769, the etiology of Zenker's diverticulum remains unclear. Various primary esophageal motor disorders have been proposed, but no consistent manometric pattern or anatomic etiology has been uniformly recognized. An association with clinical neurologic disease at our institution prompted a review of 12 cases of Zenker's diverticulum in patients over 60 years of age, treated in the last 8 years. Nine patients (75%) underwent cricopharyngeus myotomy and diverticulectomy, with uniformly good results. Ten patients (83%) had an associated neurologic disorder, substantiated by cranial CT or MRI, in most cases. A wide range of neurologic problems were identified, but a strong trend toward brainstem or basilar lesions was present. As expected, the etiology of the neurologic abnormality in most patients in this group was cerebrovascular disease, but two patients had peripheral neuropathies. We suggest that the etiology of Zenker's diverticulum in the elderly may be neurologic in origin. Esophageal motor disorders, including incomplete upper esophageal sphincter opening and increased hypopharyngeal pressures, which may result in Zenker's diverticulum, may be a manifestation of central or peripheral neurologic disease in the elderly.  相似文献   

13.
The Arabian Gulf catfish, Arius bilineatus (Valenciennes) secretes a proteinaceous epidermal secretion when threatened or injured. A toxic factor has been isolated and purified from the crude extract (crude skin toxin) of these secretions by a combination of gel filtration on Sephacryl S-300 and preparative discontinuous polyacrylamide gel electrophoresis. The purified skin toxin has a molecular weight of 39,000 Da and an isoelectric point (pI) of 5.45. Injection of the purified skin toxin into rabbits i.v. and determination of the LD50 indicated that the protein had been purified approximately 30 fold by these procedures. Injection of the purified skin toxin into rabbits caused agitation, convulsions and death within 5 min. Analysis of plasma levels of lactate dehydrogenase, glutamate-oxaloacetate transaminase and glutamate pyruvate transaminase in injected rabbits indicated that the skin toxin caused cardiac and liver damage to the animals.  相似文献   

14.
Translocation of protein kinases with broad substrate specificities between different subcellular compartments by activation of signaling pathways is an established mechanism to direct the activity of these enzymes toward particular substrates. Recently, we identified two isoforms of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II), which are targeted to the nucleus by an alternatively spliced nuclear localization signal (NLS). Here we report that cotransfection with constitutively active mutants of CaM kinase I or CaM kinase IV specifically blocks nuclear targeting of CaM kinase II as a result of phosphorylation of a Ser immediately adjacent to the NLS of CaM kinase II. Both CaM kinase I and CaM kinase IV are able to phosphorylate this Ser residue in vitro, and mutagenesis studies suggest that this phosphorylation is both necessary and sufficient to block nuclear targeting. Furthermore, we provide experimental evidence that introduction of a negatively charged residue at this phosphorylation site reduces binding of the kinase to an NLS receptor in vitro, thus providing a mechanism that may explain the blockade of nuclear targeting that we have observed in situ.  相似文献   

15.
Interleukin-2 (IL-2), secreted principally by activated helper T-cells, plays a pivotal role in the generation and regulation of the immune response. The various biologic functions of IL-2 have been the focus of intensive study over the years and have been well worked out. By contrast, an understanding of the intracellular signals coupled to the IL-2 receptor and responsible for mediating IL-2 effects in T-cells is far less developed, and the role that protein kinase C (PKC) may play in the various cellular responses to IL-2 receptor activation is unclear. In this article we will discuss IL-2, its receptors, and IL-2 signal transduction in relation to the physiological roles PKC activation may play in IL-2-mediated activation of T-cells and other hematopoietic cells.  相似文献   

16.
We have studied the role of protein kinase C (PKC) in peripheral nerve regeneration by using the cultured adult mouse sciatic nerve, which displays regrowth of sensory axons under serum-free conditions. By the use of immunohistochemistry we show that one of the isoforms of PKC, PKC beta, is present in the nerve cell bodies of normal nerves and is upregulated after injury. In spite of this, the specific PKC inhibitor chelerythrine at 5 microM, a concentration well above its IC50 value for PKC, failed to reduce the outgrowth distance of new axons. This was not due to impermeability of the drug, since the same concentration caused a clear reduction of the injury-induced proliferation of Schwann cells in the crush region. Likewise, HA-1004, an inhibitor of cyclic nucleotide-dependent protein kinases, also lacked effect on outgrowth when used on its own, even at very high concentrations (100 microM). In contrast, outgrowth was significantly reduced when 5 microM chelerythrine and 5 microM HA-1004 were used in combination. In conclusion, the present results suggest that PKC-activity is important but not indispensable for the regeneration process. Successful completion of the latter could be achieved by several, perhaps redundant, phosphorylation systems.  相似文献   

17.
In animal models, calcium antagonists (Ca-A) administered before ischemia and reperfusion reduced myocardial necrosis, attenuated postischemic contractile dysfunction, and reduced tissue calcium. In 753 patients with acute myocardial infarction (AMI), we examined if use of Ca-A at the onset of symptoms (n = 127 patients) reduced infarct size as estimated from peak creatine kinase (CKmax) and lactate dehydrogenase (LDmax) activities. The study had an observational exposed/nonexposed design, and both crude and adjusted effects were investigated. Crude effects: In the restricted cohort of patients not receiving thrombolytic treatment (thr- pts; n = 411 patients), CKmax and LDmax were lower in Ca-A+ patients than in Ca-A- patients, being 643 versus 887 U/l (2 p = 0.004) and 708 versus 867 U/l (2 p = 0.005), respectively. When using log (CKmax) and log (LKmax) as outcomes, the same results were found (2 p = 0.002). More of the restricted cohort of the pts used Ca-A in the lower quartiles of CKmax and LDmax (p for linear trend = 0.005 and 0.004 for CKmax and LDmax, respectively). Adjusted effects: Thrombolysis was an effect modifier of the association between Ca-A and peak enzyme levels. In thr-pts, the coefficients of Ca-A were negative and borderline significant for log (CKmax; 2 p = 0.088) and negative and highly significant for log (LDmax; 2 p = 0.010) when adjusting for confounders. The present observational study indicates that the use of a Ca-A at the onset of AMI reduces infarct size, as estimated from CKmax and LDmax activities.  相似文献   

18.
Tritium labelled (x=1.1 MBq/17.7 microg/kg) and unlabelled 8-iso-PGF2alpha (43 microg/kg) were administered intravenously to female rabbits and frequent blood and continuous urinary samples were collected up to 4 h. The total radioactivity was lost rapidly from the circulation. About 80% of the total radioactivity was found in urine within 4 h. The plasma half-life of 8-iso-PGF2alpha is found to be 1 min at the distribution phase. The terminal elimination phase half-life was about 4 min. At 1.5 min after administration 64%, 19% and 13% of the plasma radioactivity represented 8-iso-PGF2alpha, 15-keto-8-iso-PGF2alpha and beta-oxidised products, respectively. The values for 20-min plasma were 5%, 2%, and 88%. The radiochromatograms from 10 min-4 h urinary samples were dominated by more polar beta-oxidised products. Alpha-Tetranor-15-keto-13,14-dihydro-8-iso-PGF2alpha was identified as a major urinary metabolite.Thus, 8-iso-PGF2alpha metabolises in the rabbit mainly to several degraded polar metabolites through dehydrogenation at C-15, reduction of delta13-double bond and beta-oxidation, and excretes efficiently into the urine.  相似文献   

19.
20.
Phosphorylation sites in members of the protein kinase A (PKA), PKG, and PKC kinase subfamily are conserved. Thus, the PKB kinase PDK1 may be responsible for the phosphorylation of PKC isotypes. PDK1 phosphorylated the activation loop sites of PKCzeta and PKCdelta in vitro and in a phosphoinositide 3-kinase (PI 3-kinase)-dependent manner in vivo in human embryonic kidney (293) cells. All members of the PKC family tested formed complexes with PDK1. PDK1-dependent phosphorylation of PKCdelta in vitro was stimulated by combined PKC and PDK1 activators. The activation loop phosphorylation of PKCdelta in response to serum stimulation of cells was PI 3-kinase-dependent and was enhanced by PDK1 coexpression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号