首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soteris Kalogirou   《Applied Energy》2003,76(4):337-361
The temperature requirements of solar industrial process heat applications range from 60 °C to 260 °C. The characteristics of medium to medium-high temperature solar collectors are given and an overview of efficiency and cost of existing technologies is presented. Five collector types have been considered in this study varying from the simple stationary flat-plate to movable parabolic trough ones. Based on TRNSYS simulations, an estimation of the system efficiency of solar process heat plants operating in the Mediterranean climate are given for the different collector technologies. The annual energy gains of such systems are from 550 to 1100 kWh/m2 a. The resulting energy costs obtained for solar heat are from 0.015 to 0.028 C£/kWh depending on the collector type applied. The viabilities of the systems depend on their initial cost and the fuel price. None of these costs however is stable but change continuously depending on international market trends and oil production rates. The costs will turn out to be more favourable when the solar collectors become cheaper and subsidisation of fuel is removed. Therefore the optimisation procedure suggested in this paper should be followed in order to select the most appropriate system in each case.  相似文献   

2.
针对太阳能跨季蓄热量利用不充分的问题,提出了一种多方式可调节供暖系统模型,利用温差控制原理实现系统供暖方式的自动转换.以乌鲁木齐地区某公共建筑为例,采用TRNSYS动态模拟软件对多方式可调节供暖系统进行了全年运行分析.结果表明:15 100 m3的蓄热基坑体积与6 040 m2的集热器面积恰好匹配;在非供暖期蓄热基坑内...  相似文献   

3.
The effect of solar radiation availability on the performance of different solar heating systems has been studied. The systems include a solar water heater, passive solar houses and district solar heating systems with seasonal heat storage. Also, different collector orientations and collector types have been investigated. The hourly radiation data were generated by a simple computational simulation procedure. It was found that district solar heating systems with concentrating collectors and passive solar houses showed the largest variations for the given conditions.  相似文献   

4.
The Solar-Campus Jülich is an area of 14 ha in the north of the existing University of Applied Sciences. Three independent partners are constructing low energy buildings on this site (heating demand 144 MJ m−2 a−1). To date (June 2000) an auditorium with a library has been completed as well as an additional laboratory building. The Students’ Association Aachen has erected 23 houses with accommodation for 136 students. The houses are arranged in five rows, each of them demonstrating different kinds of modern energy-saving technologies for heating and ventilation. The energy utility in Jülich intends to build industrial buildings and move their complete organisation from southern Jülich to the Solar-Campus. A solar district heating concept, with seasonal storage, is planned to cover about 50–60% of the heating demand of all the buildings. The paper gives details of the design of the pyramidal seasonal storage tank including cost analysis. The top cover of the 2500 m3 tank will be constructed of several insulated floating pontoons, which are connected to each other, so that it is possible to walk on it. The 1200 m2 of collectors are distributed over the different buildings and coupled to the underground storage tank by either a 2-, 3- or 4-pipe distribution network. Due to the low energy demand, the overall energy consumption will be low (2124 GJ a−1). The heating cost consequently will be high: 0.17 DM/kWh with a conventional gas-based system, and 0.54 DM/kWh with the solar system including seasonal storage.  相似文献   

5.
D. Pahud   《Solar Energy》2000,69(6):495-509
A central solar heating plant with seasonal ground storage is analysed by dynamic system simulations. A reference system, involving a collector area, water buffer storage and ground duct storage, is defined for typical Swiss conditions and simulated for several types of heat load. A methodology is established for the optimisation of the main system parameters. The thermal behaviour of such a system is highlighted. The short-term heat requirements are covered by the buffer unit, whereas the seasonal heat requirements are covered by the ground duct storage. As a consequence, a system such as this is intended to supply a large solar fraction (>50%). Optimal ratios between the main system parameters are sought for an annual solar fraction of 70%. An optimal buffer volume of 110 to 130 l per m2 of collector area is obtained. The optimal duct storage volume and collector area vary respectively from 4 to 13 m3 per m2 of collector area and from 2 to 4 m2 per MWh (3.6 GJ) of annual heat demand. They depend mainly on the specific heat losses from the duct storage unit. A large annual heat demand (>3600 GJ or 1000 MWh) and/or low temperatures in the heat distribution are essential for satisfactory system thermal performance. The spacing of the boreholes which form the ground heat exchanger of the duct store is fairly constant and is found to be about 2.5 m for a ground thermal conductivity of 2.5 Wm−1 K−1. Some improvements of the system control are also investigated to assess the influence on the overall thermal performances of the system. They indicate that the system thermal performances are only slightly improved in contrast to the improvement brought by a simple but optimised system control.  相似文献   

6.
The energy saving obtainable with active solar heating and heat pumps has been studied for several years in the Northern climate of Finland. The studies deal mainly with small houses. A computer program is developed which calculates hour by hour the annual energy balance of different heating systems. The performance, of the heating systems are also measured in inhabited houses. The calculations show that the useful solar energy obtainable from the collector is 50–400 kWh/m2 annually depending on the system and the collector size. A heat pump in the system is very advantageous, because it keeps the heat losses low and the collector efficiency high. It approximately doubles the energy obtainable. The measurement results have not been as good as expected. The solar energy obtained from the collector has been 120–160 kWh/m2 annually. The main reasons for the low solar energy are design and equipment faults and the shading effects. The best energy saving device is the earth heat pump. It is also therefore very advantageous that the peak power demand decreases markedly. When the area of the earth pipes is large enough, energy may be extracted from earth through the whole year. The annual coefficient of performance is 2–3. Also a heat pump which extracts heat from exhaust air in dwelling houses has been very promising.  相似文献   

7.
S. Sillman 《Solar Energy》1981,27(6):513-528
Annual storage is used with active solar heating systems to permit storage of summer-time solar heat for winter use. This paper presents the results of a comprehensive computer simulation study of the performance of active solar heating systems with long-term hot water storage. A unique feature of this study is the investigation of systems used to supply backup heat to passive solar and energy-conserving buildings, as well as to meet standard heating and hot water loads.

Findings show that system performance increases linearly as storage volume increases, up to the point where the storage tank is large enough to store all heat collected in summer. This point, the point of “unconstrained operation”, is the likely economic optimum. In contrast to diurnal storage systems, systems with annual storage show only slightly diminishing returns as system size increases. Annual storage systems providing nearly 100% solar space heat may cost the same or less per unit heat delivered as a 50 per cent diurnal solar system. Also in contrast to diurnal systems, annual storage systems perform efficiently in meeting the load of a passive or energy-efficient building. A breakeven cost 4¢–10¢/kWh is estimated for optimal 100 per cent solar heating in the U.S.A.  相似文献   


8.
A preliminary study of a solar-heated low-temperature space-heating system with seasonal storage in the ground has been performed. The system performance has been evaluated using the simulation models TRNSYS and MINSUN together with the ground storage module DST. The study implies an economically feasible design for a total annual heat demand of about 2500 MWh. The main objective was to perform a study on Anneberg, a planned residential area of 90 single-family houses with 1080 MWh total heat demand. The suggested heating system with a solar fraction of 60% includes 3000 m2 of solar collectors but electrical heaters to produce peak heating. The floor heating system was designed for 30°C supply temperature. The temperature of the seasonal storage unit, a borehole array in crystalline rock of 60,000 m3, varies between 30 and 45°C over the year. The total annual heating costs, which include all costs (including capital, energy, maintenance etc.) associated with the heating system, were investigated for three different systems: solar heating (1000 SEK MWh−1), small-scale district heating (1100 SEK MWh−1) and individual ground-coupled heat pumps (920 SEK MWh−1). The heat loss from the Anneberg storage system was 42% of the collected solar energy. This heat loss would be reduced in a larger storage system, so a case where the size of the proposed solar heating system was enlarged by a factor of three was also investigated. The total annual cost of the solar heating system was reduced by about 20% to about 800 SEK MWh−1, which is lower than the best conventional alternative.  相似文献   

9.
为了研究太阳能谷电蓄能供热采暖系统运行特性,采用TRNSYS软件建立系统各部件模型,分析了太阳能辐照强度、集热面积和空气流量对系统太阳能保证率的影响,对系统进行优化研究。结果表明:太阳能辐射强度对系统太阳能保证率的影响较大,拉萨全年太阳能保证率波动比上海和北京小;太阳能保证率与集热面积呈正相关;空气流量对太阳能保证率影响较小,当空气流量为40 m3/(h∙m2) 时太阳能保证率最大,相比36 m3/(h∙m2)工况提高了0.26%;选择集热面积为650 m2、最佳空气流量为40 m3/(h∙m2) 的优化系统,相比集热面积为716 m2、空气流量为36 m3/(h∙m2) 工况下的年均太阳能保证率降低了1.22%。本研究可为太阳能谷电蓄能系统的后续研究提供参考。  相似文献   

10.
This paper uses the F-chart technique to evaluate three types of solar heating systems, namely; space solar heating and domestic hot water system (SHDHW), domestic hot water system (DHW) and solar swimming pool heating system (SPHS), using three types of concrete solar collectors, models A, B, and C, and one conventional metallic solar collector.

The economical analysis of SHDHW system revealed that the concrete collectors provided about 49 and 63% of the annual load when the collecting area of the solar panel increased from 55 to 88 M2 (25 to 40% of the building roof area). The corresponding solar contributions when conventional metallic collectors were used are 41 and 53%, respectively. This represents an improvement of the annual solar fraction of about 19% when concrete collectors are used instead of the metallic collectors.

It was found that solar heating systems with concrete solar collector models gave higher solar fractions and total life cycle savings than the conventional solar metallic collector.  相似文献   


11.
German central solar heating plants with seasonal heat storage   总被引:4,自引:0,他引:4  
Central solar heating plants contribute to the reduction of CO2-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions.Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (in Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown.  相似文献   

12.
In this paper, a techno-economic model has been developed for a hybrid solar forced-convection water heating system. Two options of auxiliary energy use, viz. (A) an instant electric heater and (B) use of diesel as the auxiliary energy fuel, have been considered. Numerical calculations have been made for the climate of Delhi, India, corresponding to the two representative demand patterns, viz. (i) hot-water demand of big residential buildings and (ii) industrial hot-water demand. Taking into account the life, capital cost and the maintenance cost of the solar and auxiliary systems, the cost of useful energy has been calculated for different values of collector area and tank capacity. This exercise, thereby, yields the optimum values of collector area and tank capacity corresponding to the minimum cost of useful energy. The effect of government subsidy on the optimized values of collector area, tank capacity and cost of useful energy has also been investigated.  相似文献   

13.
Domestic household thermosyphons are economically feasible and are used by over than 70% of houses in Palestine. Although domestic solar water heating for commercial applications has a good potential, only a few systems have been installed in Palestine. A systematic sizing approach for the solar system is presented in this paper and applied to a certain case study. The solar system sizing is based on the life-cycle cost LCC analysis. For the chosen case study of domestic water heating for a hotel, with hot water consumption of 2600 liters per day, the optimum collector area was found to be 37 m2, the solar fraction of heating 0.78, the LCC of system is SI 3778, with annual savings of 1338$/year and a pay back period of 3 years. With this optimized system, the cost of water heating is 1.8 $/m3comparing with 2.6 $/m3 for the conventional system.  相似文献   

14.
Multilayer fabric stratification pipes for solar tanks   总被引:1,自引:0,他引:1  
The thermal performance of solar heating systems is strongly influenced by the thermal stratification in the heat storage. The higher the degree of thermal stratification is, the higher the thermal performance of the solar heating systems. Thermal stratification in water storage can for instance be achieved by use of inlet stratifiers combined with low flow operation in the solar collector loop. In this paper, investigation of a number of different fabric stratification pipes is presented and compared to a non-flexible inlet stratifier. Additional, detailed investigation of the flow structure close to two fabric stratification pipes is presented for one set of operating conditions by means of the optical PIV (Particle Image Velocimetry) method.  相似文献   

15.
Solar water heating systems are widely used in Brazil for domestic purposes in single-family households. The exploitation of the potential energy of the water from the upper tank and the thermosyphon phenomena for hot water circulation constitutes the absolute majority of the residential solar water heating systems in the country. But, these water heating systems are usually sized according to tables provided by the manufacturers, which show the number of plates required based on the size of the family and the number of hot water outlets. This sizing is based much more on intuition rather than on scientific data. For that reason, this work has developed an optimization model for water heating systems design parameters, using a numerical simulation routine, in a long-term transient regime. The optimized design gives the slope and area of the flat plate collector, which results in the minimum cost over the equipment life cycle. The computing procedure was executed considering specific characteristics of the project. A thermosyphon solar water heating system with flat-plate collector for Sao Paulo's climate was simulated. The practice of Brazilian designers and manufacturers is to recommend the maximization of the energetic gain for the winter. This paper has analyzed in economic terms if it is more attractive to increase the gain of solar energy in the winter period, with the consequence of reduction of the solar energy gain along the year, or to adopt the adequate slope, which improves the yearly solar energy gain.  相似文献   

16.
Pollution represents a major issue, and so does the ability to utilize, when available, renewable energy sources instead of traditional ones. If, on the one hand, it is possible to utilize renewable energy sources in many contexts, on the other hand they are not exploited because of the high cost of the initial investment needed for the installation of these systems, above all when domestic usage is taken into account.This paper proposes a quantitative approach able to forecast the profitability of the introduction of domestic solar thermal systems operating in parallel with the most common systems for heating domestic sanitary water. The approach is developed firstly by analyzing the most common system for heating sanitary water from both the engineering and economic point of view. At the same time the technical–economic solutions related to the most commercialized solar heating systems, and their compatibility with the most common traditional heating systems are studied. This is carried out by using a differential economic analysis of different possible scenarios in which different matches between traditional and solar heating systems are shown, and their profitability is assessed as a function of the power installed.  相似文献   

17.
This paper presents a simple techno-economic model for a hybrid solar air-heating system based on water as the storage medium. The configuration of the system consists of a conventional solar air-heater, water tank for thermal storage, a unit which adjusts the higher air temperature (during peak sunshine hours) to the required limit (by mixing fresh air) and an arrangement for providing auxiliary energy if and when required. A thermostatically controlled electric heater is assumed to be the source of auxiliary energy, in the present calculations. In order to evaluate the performance of the system using the developed model numerical calculations have been made corresponding to the climate of Delhi, India. The calculations have been extended to obtain the optimized values of collector area and storage mass which correspond to the minimum value of useful energy. Numerical results show that the cost of useful energy obtained for optimized values of collector area and storage mass is much less than the cost of electrical heating.  相似文献   

18.
The paper describes the project for a Zero Energy House constructed at the Technical University of Denmark. The house is designed and constructed in such a way that it can be heated all winter without any “artificial” energy supply, the main source being solar energy. With energy conservation arrangements, such as high-insulated constructions (30–40 cm mineral wool insulation), movable insulation of the windows and heat recovery in the ventilating system, the total heat requirement for space heating is calculated to 2300 kWh per year. For a typical, well insulated, one-storied, one-family house built in Denmark, the corresponding heat requirement is 20,000 kWh. The solar heating system is dimensioned to cover the heat requirements and the hot water supply for the Zero Energy House during the whole year on the basis of the weather data in the “Reference Year”. The solar heating system consists of a 42 m2 flat-plate solar collector, a 30 m3 water storage tank (insulated with 60 cm of mineral wool), and a heat distribution system. A total heat balance is set up for the system and solved for each day of the “Reference Year”. Collected and accumulated solar energy in the system is about 7300 kWh per yr; 30 per cent of the collected energy is used for space heating, 30 per cent for hot water supply, and 40 per cent is heat loss from the accumulator tank. For the operation of the solar heating system, the pumps and valves need a conventional electric energy supply of 230 kWh per year (corresponding to 5 per cent of the useful solar energy).  相似文献   

19.
An experimental investigation is carried out on a forced circulation solar water heater to assess its performance under various operating conditions. The system consisted of two identical collectors of total absorber area of 3.45 m2 and a storage tank of 200 litre capacity. Experiments were carried out during clear days with and without system loading for two water mass flow rates through the collector; namely 0.1305 kg/s and 0.06525 kg/s. The system was operated without thermostat control and with thermostat control at maximum and minimum settings. The collector efficiency improved with system loading. The improvement was better with increased hot water withdrawal from the system.  相似文献   

20.
A simple mathematical model has been developed to evaluate the technoeconomic performance of a hybrid solar water heating system for commercial and industrial applications. Numerical calculations, corresponding to Delhi climatic data and for the prevalent cost of a solar energy system in the Indian market, show that the optimum collector area (meeting nearly 45 percent of the daily hot water demand M litres) is 0–0075 Mm2; either a reduction of about 35 per cent in the present solar collector costs or a more than 20 per cent rise in the cost of presently subsidized diesel oil makes the solar option economic. With the present parameters the cost of useful solar energy is higher than that obtained from the conventional system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号