首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Friction and wear on PbS(100) surfaces have been investigated on the atomic scale as a function of temperature with atomic force microscopy. At room temperature and above, the PbS(100) surface exhibited low friction (μ < 0.05) in contact with a silicon nitride probe tip, provided that interfacial wear was not encountered. In the absence of wear, friction increased exponentially with decreasing temperature, transitioning to an athermal behavior near 200 K. An Arrhenius analysis of the temperature dependence of friction yielded an activation energy ∆E = 0.32 ± 0.02 eV for the sliding contact of a silicon nitride tip on PbS(100).  相似文献   

2.
A good correlation has been found between friction force measured using a ball-on-disc tribometer (normal load 200 mN) and adhesion hysteresis measured by atomic force microscopy. Both adhesion and friction forces were investigated in liquid media (water, ethanol, formamide, ethylene glycol) and involved interactions between silicon nitride and several materials (Si(1 0 0), Si(1 1 1), silica glass, DLC and TiN coatings). Despite the difference between the two scales of measurement, comparison between the measured friction force and the dissipated energy during the adhesion process has shown that the two quantities follow the same trend. Additional experiments were conducted in NaCl 10−3 M at various pH values in order to investigate surface charge effect on adhesion and friction.  相似文献   

3.
In sliding of organic self-assembled monolayer against a probe the friction force is generally found to vary linearly with normal load. Here, lateral force microscopy is used to track the physical changes at the interface brought about when an octadecyltrichlorosilane monolayer, self-assembled on a silicon wafer, is slid against a Si3N4 tip in the 0–30 nN load range. Regarding a morphologically heterogeneous monolayer domain to be made up of tiles of characteristic friction forces, each tile is in a unique physical state; the variation of area fraction (in a scan area) of each tile is tracked as a function of normal load. The area averaged friction force at a load is obtained by summing the fractional forces of constituent friction tiles. The friction force obtained thus, is found to vary linearly with normal tip load. It is observed that this force is dominated by the low-friction crystalline tiles at low loads and by the high friction more amorphous tiles at high loads. This suggests that for a self- assembled monolayer the load governance of friction as implied by the Amontons Law may be attributed to the physical changes that are brought about at the interface by changing the normal load.  相似文献   

4.
The effects of two different textures (a 3D negative fingerprint texture and a honeycomb texture) on the tribological performance of SU-8 polymer surface have been investigated with a ball-on-disc tribometer. Friction and wear behaviors of the textured surfaces are conducted against a 4 mm diameter silicon nitride (Si3N4) ball counterface. The coefficient of friction for the negative fingerprint textured surface (μ=∼0.08) is much lower than that of the untextured surface (∼0.2) and the honeycomb textured surface (∼0.41) under a normal load of 100 mN and a rotational speed of 2 rpm. The coefficients of friction of the textured surfaces decrease with increasing normal loads between 100 mN and 300 mN. Above the normal load of 300 mN, the coefficient of friction of the negative fingerprint textured surface increases due to the occurrence of plastic deformation. The honeycomb textured surface has shown the highest coefficient of friction. The wear durability tests are also conducted at a normal load of 100 mN and a rotational speed of 500 rpm on the untextured/textured surfaces on SU-8 in the presence of an overcoat of a nano-lubricant, perfluoropolyether(PFPE). Six samples i.e. the untextured surface (Si/SU-8 and Si/SU-8/PFPE), the 3D negative fingerprint textured surface (Si/SU-8/FP and Si/SU-8/FP/PFPE) and the honeycomb textured surface (Si/SU-8/HC and Si/SU-8/HC/PFPE), each with and without PFPE nano-lubricant, have been investigated for their tribological behaviours. The negative fingerprint pattern on SU-8 with PFPE coating has shown the highest wear life of 60,000 cycles under a normal load of 100 mN. The reasons for excellent tribological performance of 3D fingerprinted SU-8 surface are analyzed using the Hertzian contact area calculation.  相似文献   

5.
LaTorre C  Bhushan B 《Ultramicroscopy》2006,106(8-9):720-734
Macroscale testing of human hair tribological properties has been widely used to aid in the development of better shampoos and conditioners. Recently, literature has focused on using the atomic force microscope (AFM) to study surface roughness, coefficient of friction, adhesive force, and wear (tribological properties) on the nanoscale in order to increase understanding about how shampoos and conditioners interact with the hair cuticle. Since there are both similarities and differences when comparing the tribological trends at both scales, it is thus recognized that scale effects are an important aspect of studying the tribology of hair. However, no microscale tribological data for hair exists in literature. This is unfortunate because many interactions between hair-skin, hair-comb, and hair-hair contact takes place at microasperities ranging from a few mum to hundreds of mum. Thus, to bridge the gap between the macro- and nanoscale data, as well as to gain a full understanding of the mechanisms behind the trends, it is now worthwhile to look at hair tribology on the microscale. Presented in this paper are coefficient of friction and adhesive force data on various scales for virgin and chemically damaged hair, both with and without conditioner treatment. Macroscale coefficient of friction was determined using a traditional friction test apparatus. Microscale and nanoscale tribological characterization was performed with AFM tips of various radii. The nano-, micro-, and macroscale trends are compared and the mechanisms behind the scale effects are discussed. Since the coefficient of friction changes drastically (on any scale) depending on whether the direction of motion is along or against the cuticle scales, the directionality dependence and responsible mechanisms are discussed.  相似文献   

6.
The effect of surface textures on the friction of a poly(dimethylsiloxane) (PDMS) elastomer has been investigated at both macro and microscales using a nanoindentation-scratching system. Friction tests were conducted by a stainless-steel bearing ball with a diameter of 1.6 mm (macroscale tests) and a Rockwell diamond tip with a radius of curvature of 25 μm (microscale tests) under normal loads of 5, 10, and 25 mN and with a sliding speed of 1 μm/s. Coefficient of friction (COF) on the pillar-textured surface was found to be much lower than that on the smooth surface of the same material, and it was reduced by about 59% at the macroscale tests and 38% at the microscale tests. The reduction of COF can be attributed to the reduced contact areas. The use of the JKR model revealed that the adhesion force has less effect on contacts under higher normal loads. COFs in different sliding directions on the groove-textured surfaces were compared, and a friction anisotropic behavior was identified and analyzed.  相似文献   

7.
超薄类金刚石膜纳米摩擦性能研究   总被引:3,自引:0,他引:3  
使用原子力显微镜对由微波等离子体电子回旋共振化学气相沉积技术制备的超薄类金刚石薄膜的纳米摩擦性能进行了研究。结果表明:氢化非晶碳膜(a-C:H)的摩擦力和外加载荷基本成线性关系,可以使用修正的Amonton公式进行表征;厚度在64.9nm以下薄膜的微观承载性能和膜厚存在明显的正比例关系。通过分析磨损深度和循环次数之间的关系以及对磨损区域的导电性研究,表明a-C:H膜表层的微观承载性能较其内层相差很大,表面存在着一层软膜。  相似文献   

8.
This paper studies the effect of contact stress on friction and wear of ultra-high molecular weight polyethylene (UHMWPE) acetabular cups by means of friction and wear joint simulator testing under serum lubrication. For a given applied load, increasing the contact stress by increasing the ball/socket radial clearance decreased both the coefficient of friction and the wear rate. Friction and wear were highly correlated. The dependence of friction on contact stress for the UHMWPE socket under serum lubrication was similar to that of semi-crystalline polymers under dry sliding. This finding indicates the occurrence of partial dry contact at asperity levels for the metal-polyethylene ball-in-socket joint under serum lubrication.  相似文献   

9.
This paper examines friction as a function of the sliding velocity and applied normal load from air to UHV in a scanning force microscope (SFM) experiment in which a sharp silicon tip slides against a flat Si(100) sample. Under ambient conditions, both surfaces are covered by a native oxide, which is hydrophilic. During pump-down in the vacuum chamber housing the SFM, the behavior of friction as a function of the applied normal load and the sliding velocity undergoes a change. By analyzing these changes it is possible to identify three distinct friction regimes with corresponding contact properties: (a) friction dominated by the additional normal forces induced by capillarity due to the presence of thick water films, (b) higher drag force from ordering effects present in thin water layers and (c) low friction due to direct solid–solid contact for the sample with the counterbody. Depending on environmental conditions and the applied normal load, all three mechanisms may be present at one time. Their individual contributions can be identified by investigating the dependence of friction on the applied normal load as well as on the sliding velocity in different pressure regimes, thus providing information about nanoscale friction mechanisms.  相似文献   

10.
In order to obtain information on the mechanisms of tribochemistry in silicon nitride, we studied the effects of chemical parameters (temperature and concentration of reagent) and tribological parameters (load and sliding speed) on the kinetics of the reaction, i.e. the rate of material removal. The temperature dependence of the wear rate of silicon nitride has been studied in several solutions. In CrO3 and in KOH, the removal rate increases with temperature; the apparent activation energy is 20 kJ/mole in CrO3 and 22 kJ/mole in KOH. In water, material removal is temperature independent, in KMnO4, its rate decreases with increasing temperature. These changes are accompanied by parallel variations in the coefficient of friction. The reaction rate presents a complex dependence on the concentration of CrO3 solutions. In water and CrO3 solutions, we observed a strong dependence of friction and material removal rate with the load. With the changes in temperature, concentration and load, it is found that the reaction rate (in mm3/(N·m)) is linear with the coefficient of friction above a threshold value μth≈0.2. The velocity dependence is complicated by the phenomena of mixed lubrication. In all cases, the lack of solid wear particles and the production of ammonia have verified the tribochemical nature of the material removal. The mechanism of stimulation of the chemical reaction by friction is a quasi-static stretching of the bonds at the interface and a high local vibration energy of the atoms at the sliding contact.  相似文献   

11.
《Wear》2007,262(1-2):130-137
Friction characteristics of self-assembled monolayers (SAMs) coated on Si-wafer (1 0 0) by chemical vapor deposition technique were studied experimentally at nano and micro-scales. Four self-assembled monolayers, such as dimethyldichlorosilane (DMDC), diphenyldichlorosilane (DPDC), perfluorooctyltrichlorosilane (PFOTS) and perfluorodecanoicacid (PFDA) coated on Si-wafer (1 0 0) were used as test materials. Nano-scale friction was measured using atomic force microscopy (AFM) in the range of 0–40 nN normal loads, in LFM (lateral force microscopy) mode, using a contact mode type Si3N4 tip. Results showed that the friction of SAMs at this scale was influenced by their physical/chemical properties, while that of Si-wafer by its inherent adhesion. Further, micro-scale friction tests were also performed with a ball-on-flat type micro-tribotester under reciprocating motion. Friction was measured in the range of 1500–4800 μN applied normal loads using glass balls of varying radii, viz., 0.25, 0.5 and 1 mm. It was observed that the performance of SAMs was more superior to Si-wafer even at micro-scale, except for PFDA. Evidences obtained using scanning electron microscope showed that Si-wafer and PFDA exhibited wear at this scale. Wear in the case of Si-wafer was due to solid–solid adhesion and that in the case of PFDA due to the influence of humidity (moisture). The micro-scale friction in both these materials was severely influenced by their wear.  相似文献   

12.
Friction and wear behaviors of hydrogenated fullerene-like (H-FLC) carbon films sliding against Si3N4 ceramic balls were performed at different contact loads from 1 to 20 N on a reciprocating sliding tribometer in air. It was found that the films exhibited non-Amontonian friction behaviors, the coefficient of friction (COF) decreased with normal contact load increasing: the COF was ~0.112 at 1 N contact load, and deceased to ultralow value (~0.009) at 20 N load. The main mechanism responsible for low friction and wear under varying contact pressure is governed by hydrogenated carbon transfer film that formed and resided at the sliding interfaces. In addition, the unique fullerene-like structures induce well elastic property of the H-FLC films (elastic recovery 78%), which benefits the high load tolerance and induces the low wear rate in air condition. For the film with an ultralow COF of 0.009 tested under 20 N load in air, time of flight secondary ion mass spectrometry (ToF-SIMS) signals collected inside and outside the wear tracks indicated the presence of C2H3 and C2H5 fragments after tribological tests on the H-FLC films surface. We think that the tribochemistry and elastic property of the H-FLC films is responsible for the observed friction behaviors, the high load tolerance, and chemical inertness of hydrogenated carbon-containing transfer films instead of the graphitization of transfer films is responsible for the steady-state low coefficients of friction, wear, and interfacial shear stress.  相似文献   

13.
Ionic liquids (ILs) are considered as a new kind of lubricant for micro/nanoelectromechanical system (M/NEMS) due to their excellent thermal and electrical conductivity. However, so far, only few reports have investigated the tribological behavior of molecular thin films of various ILs. Evaluating the nanoscale tribological performance of ILs when applied as a few nanometers-thick film on a substrate is a critical step for their application in MEMS/NEMS devices. To this end, four kinds of ionic liquid carrying methyl, hydroxyl, nitrile, and carboxyl group were synthesized and these molecular thin films were prepared on single crystal silicon wafer by dip-coating method. Film thickness was determined by ellipsometric method. The chemical composition and morphology were characterized by the means of multi-technique X-ray photoelectron spectrometric analysis, and atomic force microscopic (AFM) analysis, respectively. The nano- and microtribological properties of the ionic liquid films were investigated. The morphologies of wear tracks of IL films were examined using a 3D non-contact interferometric microscope. The influence of temperature on friction and adhesion behavior at nanoscale, and the effect of sliding frequency and load on friction coefficient, load bearing capacity, and anti-wear durability at microscale were studied. Corresponding tribological mechanisms of IL films were investigated by AFM and ball-on-plane microtribotester. Friction reduction, adhesion resistance, and durability of IL films were dependent on their cation chemical structures, wettability, and ambient environment.  相似文献   

14.
The measuring and modelling of friction are critically important for the motion control in nanopositioning, particularly when bearings are employed to cover the wide working distances. Since the positioning system usually operates at very low speed to achieve fine positioning, the boundary lubrication is the dominant regime. A detailed characterization of the friction of boundary lubrication formed by Poly–α–Olefin (PAO) with and without surfactant and a suspension of MoS2 in base oil has been performed in reciprocating sliding tests by steel/steel point contacts, and correlated with adhesion measurements by silicon/silicon point contacts. A microtribometer based on laser interferometers and glass springs, which can resolve 100 nN force in a speed range of 1–1000 μm/s was employed to detect the minute changes in forces. We find that a simple linear function instead of a logarithmic function is possible to describe the relationship between the friction force and operating speed for all the lubricants tested, though the gradients are quite different and under the influence of normal load. Comparing to PAO+surfactant and MoS2 suspension, PAO shows a much higher load-dependent coefficient of friction. This result is further confirmed by the repulsion force measurements, which shows a higher increase of contact pressure with the increase of normal load for PAO.  相似文献   

15.
Yasuhisa Ando 《Wear》2003,254(10):965-973
Conditions (normal load, sliding speed, ambient conditions, and material) to obtain the lower friction coefficient were studied by measuring the friction and pull-off forces between a metal pin (copper or gold) and a plate (steel or single crystal silicon). First, a pin was rubbed against a plate under a normal load between −12 and 870 μN at a sliding speed between 0.012 and 9.6 μm/s. The friction force was measured during reciprocating sliding motion. The pull-off force was measured before and after each friction force measurement. All the force measurements were taken in high vacuum at 10−5 Pa, dry argon at 1 atm, and ambient humid air of 38 and 60% relative humidity. Then, the friction coefficient was calculated by dividing friction force by the sum of normal load and pull-off force. In high vacuum, when a copper pin was rubbed against either a silicon or steel plate, the friction coefficient decreased to less than 0.05 with decreasing sliding speed. The effect of sliding speed on the friction coefficient suggests that under a low normal load the viscous resistance of liquid contributed to the friction force. When a gold pin was rubbed against a silicon plate, the friction coefficient was not affected by sliding speed.  相似文献   

16.
Al6061 matrix composite reinforced with nickel coated silicon nitride particles were manufactured by liquid metallurgy route. Microstructure and tribological properties of both matrix alloy and developed composites have been evaluated. Dry sliding friction and wear tests were carried out using pin on disk type machine over a load range of 20-100 N and sliding velocities of range 0.31-1.57 m/s. Results revealed that, nickel coated silicon nitride particles are uniformly distributed through out the matrix alloy. Al6061-Ni-P-Si3N4 composite exhibited lower coefficient of friction and wear rate compared to matrix alloy. The coefficient of friction of both matrix alloy and developed composite decreased with increase in load up to 80 N. Beyond this, with further increase in the load, the coefficient of friction increased slightly. However, with increase in sliding velocity coefficient of friction of both matrix alloy and developed composite increases continuously. Wear rates of both matrix alloy and developed composites increased with increase in both load and sliding velocity. Worn surfaces and wear debris was examined using scanning electron microscopy (SEM) for possible wear mechanisms. Energy dispersive spectroscope (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscope (XPS) techniques were used to identify the oxides formed on the worn surfaces and wear debris.  相似文献   

17.
Many friction effects are investigated extensively on both the macro‐ and the nanoscale. However, the range between these limits — the range of micrometres and micronewtons — has scarcely been probed. Using new test equipment, this particular range has been analysed. The example of the stick—slip phenomenon was chosen for discussion of the internal physical properties at different length scales. Results are presented for the entire range, from newtons to nanonewtons. Reality was simulated by friction testers operating at various length and force scales. The data were acquired with the help of a pin‐on‐disc tester for the macroscale, a novel micro‐friction tester for the microscale, and an atomic force microscope for the nanoscale.  相似文献   

18.
The ability of directed streams of three representative hydrocarbon gases ‐ acetylene C2H4, ethylene C2H4, and ethane C2H6 ‐ to provide extended‐duration lubrication to high‐temperature sliding contacts via surface deposition of pyrolytic carbon has been demonstrated. One order‐ and two order‐of‐magnitude reductions in friction coefficient and wear rate of self‐mated silicon nitride sliding contacts can be realised by this technique. The ability of these gases to provide ‘adequate’ lubrication at high temperature is illustrated through mapping the normal load/temperature/precursor flow rate space over which reduced friction may be maintained. Acetylene was the most effective precursor for pyrolytic carbon deposition, providing adequate lubrication over the broadest range of normal load/temperature/flow rate combinations, while ethane was the least effective. The boundary of the regions of adequate lubrication represents the locus of contact conditions with equal rates of lubricious carbon deposition and removal by wear. The shape of this boundary, as explored in the mapping study, supports a proposed model in which the removal rate is proportional to the product of normal load and sliding speed, while the deposition rate is proportional to the product of precursor flow rate and an Arrhenius temperature dependence.  相似文献   

19.
Surface texture has been well studied for metals and ceramics. For the tribo-pair consisted of soft and stiff materials, in order to find out which side is better for texturing, friction tests between steel and UHMWPE were performed to evaluate the effect of dimple patterns at different load–speed conditions.At a light load of 100 N, surface texture on either steel or UHMWPE can reduce friction, but their optimum area densities are different. However, at a heavy load of 700 N, only the pattern textured on UHMWPE can effectively reduce friction. Test results are further analyzed in terms of contact stress.  相似文献   

20.
Friction between titanium spheres and an artificially structured silicon surface was measured with a friction force microscope. Two spheres with radii of 2.3 μm and 7.9 μm were firmly glued to the tip of the microscope cantilever. A periodic stripe pattern with a groove depth of 26 nm and systematically increasing groove width from 500 nm to 3500 nm was fabricated from a silicon wafer with a focused ion beam. The sphere substrate friction coefficient shows a strong enhancement at a certain groove periodicity, which is related to geometrical interlocking of the two surfaces. This shows that careful modification of the surface roughness can help to control the tribological behavior of mesoscale contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号