首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
四川盆地昭通区块龙马溪组页岩的TOC含量和现场含气量测试显示,下段页岩含气性好,储层也具有可改造性。利用全岩及黏土矿物分析、等温吸附实验、比表面及孔径分布等实验研究,发现页岩中干酪根纳米级孔隙发育,孔径主要分布在2~60 nm,是页岩比表面的主要贡献者。页岩与干酪根的吸附-脱附曲线形态也说明了这一现象,两者基本相似,都具有明显的滞后环。而页岩中黏土也具有一定比表面积,其含量与页岩的比表面不存在相关性。因此,TOC含量增加,页岩的比表面积增大,吸附能力增强,饱和吸附量变大,使得含气量增加。  相似文献   

2.
部分水解聚丙烯酰胺在多孔介质中的动态吸附规律研究   总被引:1,自引:0,他引:1  
研究了胶乳型部分水解聚丙烯酰胺在人造岩心中的动态吸附规律。考察了含盐量、聚合物浓度、岩心渗透率对吸附的影响,提出了饱和吸附滞留量的概念和不可入孔隙体积的近似计算方法,对试验结果进行了多方面的讨论。  相似文献   

3.
为探究页岩孔径结构对甲烷吸附能力影响,基于巨正则蒙特卡洛法并将高压压汞实验、低温N_2实验、CO_2吸附实验等物理模拟结果相比较,研究甲烷在页岩中的吸附能力。结果表明:页岩孔径分布在0.5~2.0 nm时页岩孔隙的过程吸附量随孔径增大表现出跃变式增加模式,孔径超过2 nm时页岩孔隙单位面积过剩吸附量不再发生明显变化。随着页岩孔径逐渐变大,各孔隙单位比表面积上的过剩吸附量随压力的增大均呈现出先增大后减小的趋势。实验获得的页岩比表面积变化特征为随孔径增加成反比的趋势,页岩的总比表面积主要是由不大于4 nm阶段的孔隙提供。甲烷在孔隙中的过剩吸附量随孔径的增大而不断减小,小于4 nm的孔隙贡献的吸附量占总吸附量的93.58%,吸附量与比表面积表现出正相关关系。该研究结果为评价富有机质页岩中甲烷赋存吸附特征提供理论依据。  相似文献   

4.
天然气盖层微孔隙形态的研究方法及其地质意义   总被引:4,自引:2,他引:2       下载免费PDF全文
本文根据微孔隙表面具有吸附及凝聚的原理,通过ST-03型比表面、孔径测定仪,测定微孔的吸附、脱附等温线,利用其形态及对吸附量的研究,判断天然气盖层微孔隙的形态并对孔隙和裂缝加以区别,为油气的初次或再次运移研究打下基础。   相似文献   

5.
以中扬子西部下古生界海相页岩和中生界陆相页岩为对象,通过场发射扫描电镜、氮气吸附和高压甲烷等温吸附等实验测试,探讨页岩孔隙结构特征对甲烷吸附能力的影响。高演化程度的古生界海相富有机质页岩储集层中发育大量有机质孔隙(孔径多小于50 nm),页岩比表面和甲烷吸附量随有机碳含量的增加而增大,说明有机质孔隙是控制高丰度页岩甲烷吸附能力的最主要因素。由于有机碳含量低和热演化程度低,低丰度海相页岩和陆相页岩中有机质孔隙发育程度有限,页岩储集空间主要由30 nm~4.5μm孔径的无机孔隙构成,黏土矿物孔隙为甲烷吸附提供了更多的比表面,成为影响其甲烷吸附能力的重要因素。随着成熟度增加,页岩储集层的主要孔隙网络系统由无机孔隙向有机质孔隙转变,有利于提高页岩吸附能力。图7表2参33  相似文献   

6.
渝东南地区龙马溪组页岩储层特征与主控因素   总被引:2,自引:0,他引:2  
渝东南地区下志留统龙马溪组是中国重要的页岩气勘探开发层位,为研究其储层特征与主控因素,对该层位的页岩样品进行了全岩X 衍射、岩石物性、有机碳含量、比表面和孔径、等温吸附等分析测试,总结出该层位的岩石矿物特征、储层物性特征以及孔隙结构特征。分析表明,孔隙体积是由TOC 和矿物成分共同控制的,对于吸附量的控制,有机碳含量起主要作用,矿物成分只能在一定程度上影响饱和吸附量。该研究为渝东南地区该层位页岩气资源的勘探开发提供了储层地质依据。  相似文献   

7.
为探索富有机质泥页岩的储层特征,利用全岩 X-射线衍射、比表面—孔径分布、等温吸附、有机碳、有机质成熟度等测试方法,对鄂尔多斯盆地东南部山西组泥页岩储层的矿物组成、孔隙体积和孔隙结构进行了综合研究。结果表明:泥页岩矿物组成主要为黏土矿物和陆源碎屑矿物石英、长石,含少量黄铁矿和菱铁矿等矿物;有机碳含量平均为 3.03%,有机质成熟度平均为 2.55%,CH4饱和吸附量平均为 1.91m3/t;泥页岩孔隙结构以中孔隙为主,泥页岩储层中主要是黏土矿物控制着中孔、宏孔的发育,TOC 含量与微孔体积呈微弱的正相关关系;饱和吸附量与黏土矿物(尤其是伊利石)和有机碳含量呈正相关性。  相似文献   

8.
以三嵌段共聚物聚环氧乙烷-聚环氧丙烷-聚环氧乙烷为模板合成了介孔SiO2,并用γ-氨丙基三乙氧基硅烷(APTES)对其进行表面修饰,得到阳离子介孔SiO2。利用小角XRD和N2吸附-脱附分析了其孔隙结构、比表面积和孔径大小,用透射电子显微镜(TEM)观察了其孔形状及孔的有序度,用傅里叶变换红外光谱(FT-IR)分析了其结构和表面官能团,并研究了阳离子介孔SiO2对水中大量聚丙烯酰胺(HPAM)的吸附特性。结果表明:介孔SiO2成功地实现了阳离子化,呈规则有序的二维六边形结构,BET比表面积为66.3m2/g,平均孔径为6.94nm;在吸附时间为120min、吸附温度为50℃、阳离子介孔SiO2与HPAM水溶液的质量比为4∶1、溶液初始pH值为6.5时,阳离子介孔SiO2对水中HPAM的吸附量达到1 340mg/g。  相似文献   

9.
石油羧酸盐表面活性剂在油砂上的静吸附研究   总被引:4,自引:0,他引:4  
在实验基础上,探讨了石油羧盐表面活性剂在油砂上的静吸附量随液固比、时间、活性剂浓度变化的规律及机理,研究了电解质对吸附等温线的影响,指出了活性在油砂上最大吸附损失的学浓度界限。  相似文献   

10.
聚合物不可入孔隙体积直接决定聚合物驱的波及系数,影响聚合物在孔隙介质中的流动性.采用单段塞法评价了岩心渗透率、部分水解聚丙烯酰胺相对分子质量、质量浓度、注入速度、温度、矿化度等因素对不可入孔隙体积的影响规律.结果表明:渗透率越高,部分水解聚丙烯酰胺分子可进入的孔隙体积分数增加,不可入孔隙体积分数越小;部分水解聚丙烯酰胺相对分子质量越大,平均分子链尺寸越大,分子线团能进入的孔隙体积分数越小,不可入孔隙体积分数越大;部分水解聚丙烯酰胺质量浓度越高,分子线团互相缠绕、重叠,流动速度减缓,在大孔隙中的吸附滞留量增加,地层残留的部分水解聚丙烯酰胺通过调剖作用使后续更多分子流入微小孔隙,不可入孔隙体积分数越小;随注入速度增大,注采压差增加,分子线团越容易流入相对狭小的孔隙中,不可入孔隙体积分数减小;随温度升高,分子内能增加,分子链卷曲更加厉害,且溶剂化作用减弱,水膜厚度减小,分子线团的体积变小,不可入孔隙体积分数减小;随矿化度增加,部分水解聚丙烯酰胺分子链会更加卷曲,不可入孔隙体积分数减小.聚合物不可入孔隙体积不但存在,而且不容忽视.  相似文献   

11.
聚丙烯酰胺凝胶在裂缝孔隙双重介质中的封堵性能   总被引:4,自引:1,他引:3  
针对克拉玛依油田八区乌尔禾组油藏的基本特征,为了研究在裂缝孔隙双重介质中聚丙烯酰胺凝胶的封堵能力,在室内建立了3种岩心模型,测试了不同模型中聚丙烯酰胺凝胶的封堵率及耐冲刷性;运用不同浓度聚丙烯酰胺合成的凝胶,在不同注入速度、不同岩心渗透率条件下开展了堵水驱油和长岩心模型封堵评价实验,研究了聚丙烯酰胺凝胶对裂缝孔隙模型的封堵率和原油采出程度的影响.结果表明,聚丙烯酰胺凝胶对所有裂缝孔隙模型的封堵率都大干94%;裂缝孔隙模型在聚丙烯酰胺凝胶封堵后,水驱采出程度增加近一倍,最终采出程度达到60%以上.  相似文献   

12.
微生物采油用营养物质在石英砂上的静态和动态吸附规律   总被引:1,自引:1,他引:0  
为了确定微生物采油用营养物质在地层中的损耗情况,在模拟油藏条件下,分别利用浸泡法和物质平衡法研究了微生物采油常用营养物质(葡萄糖、硝酸钾、磷酸二氢钾)在石英砂上的静态和动态吸附规律.实验结果表明,各营养物质的静态吸附量和动态滞留量相差不大,其中葡萄糖的静态吸附量和动态滞留量最高,其静态吸附量为0.85 mg/g,硝酸钾和磷酸二氢钾的吸附量较小,仅为0.1mg/g左右;在动态吸附实验中,当注入1.5倍孔隙体积营养液时,岩心产出液中各营养物质的质量浓度与注入时的质量浓度接近,转水驱后,随着注入体积的增加,产出液中营养物质的质量浓度逐渐降低,当转水驱2倍孔隙体积时,产出液中各营养物质的质量浓度接近0,说明动态驱替时吸附作用较弱.  相似文献   

13.
石油羧酸盐在高岭土上静吸附规律的实验研究   总被引:4,自引:4,他引:4  
侯吉瑞  康万利 《油田化学》1994,11(4):340-344
本文在实验基础上研究了石油羧酸盐表面活性剂在高岭土上的静吸附量随时间、液固比、含盐量、活性剂浓度而变化的规律,观察到了吸附最大值,对全部实验结果作了理论解释。  相似文献   

14.
煤储层具有大量的裂隙和孔隙,使煤岩具有很大的比表面积,为煤中甲烷的吸附提供了必要条件。采用自主研发的煤层气吸附装置,通过对沁水盆地寺河煤矿不同粒径煤粉的吸附性模拟实验,总结了不同粒径煤粉在吸附甲烷12 h内的吸附规律,计算出其中吸附气量,研究了吸附速率、吸附量的变化规律。研究认为:吸附的前10 min,吸附量占总吸附量的40%~60%,煤粉粒径越小,所占的比例越大,吸附越快;不同粒径煤粉的吸附量为15.1~29.1 mL/g,煤粉粒径越小,单位质量煤粉吸附量越大。通过对煤岩吸附规律的深入研究,为沁水盆地煤层气的勘探开发提供技术支持。  相似文献   

15.
为探索富有机质泥页岩的储层特征,利用全岩X-射线衍射、比表面—孔径分布、等温吸附、有机碳、有机质成熟度等测试方法,对鄂尔多斯盆地东南部山西组泥页岩储层的矿物组成、孔隙体积和孔隙结构进行了综合研究。结果表明:泥页岩矿物组成主要为黏土矿物和陆源碎屑矿物石英、长石,含少量黄铁矿和菱铁矿等矿物;有机碳含量平均为3.03%,有机质成熟度平均为2.55%,CH4饱和吸附量平均为1.91m3/t;泥页岩孔隙结构以中孔隙为主,泥页岩储层中主要是黏土矿物控制着中孔、宏孔的发育,TOC含量与微孔体积呈微弱的正相关关系;饱和吸附量与黏土矿物(尤其是伊利石)和有机碳含量呈正相关性。  相似文献   

16.
利用矿物组分、有机地球化学、氮气吸附、物性及扫描电镜等资料,对黔东南岑巩地区下寒武统牛蹄塘组和变马冲组页岩孔隙结构特征进行了系统研究。牛蹄塘组与变马冲组贫有机质页岩以平板和狭缝形黏土粒间孔为主,平均孔径普遍大于5 nm;牛蹄塘组富有机质页岩以狭缝形和少量墨水瓶状孔为主,平均孔径普遍小于3~4 nm,比表面积为贫有机质页岩的2~3倍。页岩总孔容与比表面积、黏土含量与平均孔径均为正相关关系,而前二者与后二者均为负相关关系。有利保存条件下页岩具有相对"高孔低渗"特征,峰值孔径较大,有机质孔发育程度较高,孔渗相关性强。不利保存条件下页岩储层致密,孔隙度与峰值孔径较低,裂缝过度发育造成相对"低孔高渗"特征。有机碳含量对孔隙结构具有重要控制作用,与孔容、比表面及孔隙度总体正相关,与平均孔径负相关;过高有机碳含量层段页岩塑性增强,孔径较低,压实作用和不利保存条件等因素使部分狭窄孔喉发生萎缩、坍塌与闭合,导致孔隙度、孔容、比表面和脆性与有机碳含量出现负相关关系。  相似文献   

17.
煤层气与页岩气吸附/解吸的理论再认识   总被引:4,自引:0,他引:4  
为了解决一些煤层气与页岩气气田开发效果与预测的差异很大、产能低、递减快及开发成本高等问题,由于吸附/解吸基本理论直接影响开发方案的制定与实施,通过研究煤层气的煤化过程及页岩气的成藏过程,重新界定了孔隙中原始气-水分布状态。发现煤层气与页岩气的吸附气属于固-液界面吸附的研究领域,其吸附规律应满足适合固-液界面的Langmuir等温吸附定律,即气体的吸附量与溶液的浓度有关,而对环境压力不敏感。理论与实验研究表明固-液界面吸附气排水降压后解吸困难,吸附气多而游离气少的储层产气量很难提高,其显著不同于目前普遍使用的固-气界面吸附理论。同时研究了多孔介质中微小孔隙的气-水界面压降,发现对于微/纳米孔隙气相的压力可以远高于液相压力,而目前的测井及试井尚不能传感这种气相压力,因此会导致低估游离气的储量及其对产量的贡献。  相似文献   

18.
聚丙烯酰胺在油层岩石中的滞留   总被引:4,自引:1,他引:3  
本文用英国联合胶体公司提供的三种聚丙烯酰胺和一种国产聚丙烯酰胺,在大庆油田的油层岩心上进行静态吸附与滞留作用的实验研究,应用淀粉-碘化物显色法检测聚合物浓度的技术,测量了不同表面性质砂岩的静态吸附量及在油层岩石中的滞留量,并对实验结果作了多方面的讨论。  相似文献   

19.
郭兰磊 《石油与天然气化工》2011,40(6):587-589,606,539
建立了密闭取芯井岩芯中微量聚合物的分离及浓度、相对分子质量和水解度的测试方法;利用建立的方法研究了地层中残留聚合物的性能变化,分析了聚合物在聚驱后油层中平面、层内及层间的吸附滞留规律,研究了聚合物吸附滞留量与剩余油饱和度的关系;并利用红外光谱、扫描电镜等方法研究了地层中残留聚合物的结构和形态变化。研究发现:聚驱后聚合物的性能发生了较大变化,水解度增加约50%左右,相对分子质量约为原始聚丙烯酰胺的1/10,其主要成分仍为聚丙烯酰胺,主要以絮状集聚的形式存在于地层中;聚驱后聚合物在平面上普遍存在吸附滞留,且剩余油富集的地方吸附滞留量较低。  相似文献   

20.
疏水缔合聚合物HAP在石英砂上的吸附特性研究   总被引:4,自引:1,他引:4  
针对某油藏条件,选用配方研究筛选出来的疏水缔合聚合物HAP,通过淀粉-碘化镉比色法测定其质量含量,研究了它在石英砂上的静态吸附特性,并与部分水解聚丙烯酰胺HPAM进行对比。实验结果表明:疏水缔合聚合物HAP与部分水解聚丙烯酰胺HPAM在石英砂上的吸附量的倒数与平衡质量含量的倒数之间均呈良好的线性关系,说明均符合Langmuir等温吸附规律;疏水缔合聚合物溶液在石英砂上的最大吸附量显大于部分水解聚丙烯酰胺在石英砂上的最大吸附量;HAP在石英砂上的吸附量在一定范围内随着温度的升高而降低,随着矿化度的增加而增加,分析认为:其主要原因与疏水缔合聚合物特殊的分子结构及其在溶液中的形态有关。实验所得数据对聚合物驱的数值模拟和动态预测等理论研究和现场应用具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号