共查询到19条相似文献,搜索用时 109 毫秒
1.
传统支持向量机是近几年发展起来的一种基于统计学习理论的学习机器,在非线性函数回归估计方面有许多应用。最小二乘支持向量机用等式约束代替传统支持向量机方法中的不等式约束,利用求解一组线性方程得出对象模型,避免了求解二次规划问题。本文采用最小二乘支持向量机解决了航空煤油干点的在线估计问题,结果表明,最小二乘支持向量机学习速度快、精度高,是一种软测量建模的有效方法。在相同样本条件下,比RBF网络具有较好的模型逼近性和泛化性能,比传统支持向量机可节省大量的计算时间。 相似文献
2.
基于尺度核函数的最小二乘支持向量机 总被引:1,自引:0,他引:1
支持向量机的核函数一直是影响其学习效果的重要因素.本文基于小波分解理论和支持向量机核函数的条件,提出一种多维允许支持向量尺度核函数.该核函数不仅具有平移正交性,且可以以其正交性逼近二次可积空间上的任意曲线,从而提升支持向量机的泛化性能.在尺度函数作为支持向量核函数的基础之上,提出基于尺度核函数的最小二乘支持向量机(LS-SSVM).实验结果表明,LS-SSVM在同等条件下比传统支持向量机的学习精度更高,因而更适用于复杂函数的学习问题. 相似文献
3.
基于最小二乘支持向量机的离子传感器自校正的研究 总被引:2,自引:0,他引:2
离子传感器是环境水质监测、污水处理、设施农业等领域的关键技术之一.由于离子传感器的非线性、漂移和交叉敏感性等影响其检测精度和可靠性,难以进行连续在线检测.本文研究硝酸根离子传感器的自校正方法,以适应动态环境的连续监测.根据实验数据,详细分析硝酸根离子传感器的响应特性,考虑零点和时间漂移,基于最小二乘支持向量机,提出一种硝酸根离子传感器的自校正方法,并给出详细描述和分析.实验结果表明其较显著地降低离子传感器的响应误差,验证本文所提方法的有效性. 相似文献
4.
基于最小二乘支持向量机的预测控制 总被引:2,自引:0,他引:2
最小二乘支持向量机(LS—SVM)方法克服了经典二次规划方法求解支持向量机的维数灾问题。适合于大样本的学习。提出一种新的基于LS—SVM模型的预测控制结构,对一典型非线性系统-连续搅拌槽反应器(CSTR)的仿真表明,该控制方案表现出优良的控制品质并能适应被控对象参数的变化,具有较强的鲁棒性和自适应能力。 相似文献
5.
为了解决增量式最小二乘孪生支持向量回归机存在构成的核矩阵无法很好地逼近原核矩阵的问题,提出了一种增量式约简最小二乘孪生支持向量回归机(IRLSTSVR)算法.该算法首先利用约简方法,判定核矩阵列向量之间的相关性,筛选出用于构成核矩阵列向量的样本作为支持向量以降低核矩阵中列向量的相关性,使得构成的核矩阵能够更好地逼近原核... 相似文献
6.
支持向量机在机械故障诊断中的应用研究 总被引:20,自引:2,他引:20
在机械故障诊断中,通常不具备有大量的故障样本,因此,制约了故障诊断技术向智能化方向发展。而基于统计学习理论(SLT)的支持向量机(SVM)方法正好克服了这方面的不足。统计学习理论是专门研究少样本情况下的统计规律及学习方法的理论。SLT理论和SVM方法为故障诊断技术向智能化发展提供了新的途径。该文讨论了支持向量机在故障诊断领域中应用的分类算法。并以滚动轴承的振动信号为例进行了试验论证。试验表明:SVM方法对具有少样本的故障诊断领域具有很强的适应性。 相似文献
7.
最小二乘支持向量机算法研究 总被引:17,自引:0,他引:17
1 引言支持向量机(SVM,Support Vector Machines)是基于结构风险最小化的统计学习方法,它具有完备的统计学习理论基础和出色的学习性能,在模式识别和函数估计中得到了有效的应用(Vapnik,1995,1998)。支持向量机方法一方面通过把数据映射到高维空间,解决原始空间中数据线性不可分问题;另一方面,通过构造最优分类超平面进行数据分类。神经网络通过基于梯度迭代的方法进行数据学习,容易陷入局部最小值,支持向量机是通过解决一个二次规划问题,来获得 相似文献
8.
提出了一个最小二乘双支持向量回归机,它是在双支持向量回归机基础之上建立的,打破了标准支持向量回归机利用两条平行超平面构造ε带的思想。事实上,它是利用两条不一定平行的超平面构造ε带,每条超平面确定一个半ε-带,从而得到最终的回归函数,这使该回归函数更符合数据本身的分布情况,回归算法有更好的推广能力。另外,最小二乘双支持向量机只需求解两个较小规模的线性方程组就能得到最后的回归函数,其计算复杂度相对较低。数值实验也表明该回归算法在推广能力和计算效率上有一定的优势。 相似文献
9.
一种稀疏最小二乘支持向量分类机 总被引:1,自引:0,他引:1
一般的支持向量分类机需要求解二次规划问题,最小二乘支持向量机只需求解一个线性方程组,但其缺乏稀疏性.为了改进最小二乘支持向量分类机,本文结合中心距离比值及增量学习的思想提出一种基于预选、筛选支持向量的稀疏最小二乘支持向量机.该方法既能弥补最小二乘向量机的稀疏性,减少计算机的存储量和计算量,加快最小二乘支持向量机的训练速度和决策速度,又能对非均衡训练数据造成的分类面的偏移进行纠正,还不影响最小二乘支持向量机的分类能力.3组实验结果也证实了这一点. 相似文献
10.
针对模糊图像恢复问题,提出了一种基于最小二乘支持向量机的模糊图像恢复算法.该方法利用最小二乘支持向量机的非线性映射能力,通过训练样本对的学习训练,在模糊图像与清晰图像之间建立映射关系对测试样本进行恢复.实际图像恢复实验表明,得到的恢复图像在视觉上和定量分析上都获得了比较好的效果.与神经网络方法相比,最小二乘支持向量机克服了神经网络的模型选择与过学习问题、局部极小问题等. 相似文献
11.
12.
13.
最小二乘支持向量机(LS-SVM)是支持向量机(SVM)的一种扩展,其算法简练,计算速度快;利用LS-SVM进行特征提取,可以有效地降低输入样本维数,缩减模型的运算时间,同时LS-SVM又具有优越的非线性回归能力;为实现氧化铝高压溶出过程中苛性比值在线测量,建立了一种基于LS-SVM的软测量模型,并将此模型应用于实际生产;工业数据的仿真结果表明该模型具有较高的预测精度和范化能力,能满足在线检测、实时控制的要求。 相似文献
14.
15.
16.
基于支持向量机的导航星选取算法研究 总被引:3,自引:0,他引:3
在星敏感器导航星表的建立过程中由于恒星的数量太多, 往往要进行筛选, 通常这种选择是一种基于枚举的大量反复的提取过程, 复杂费时而结果往往并不是最优的。而基于统计学习理论( SLT) 的支持向量机( SVM) 方法正好克服了这方面的不足。SLT 理论和SVM 方法为导航星选取过程的简化和结果的最优性的获得提供了新的途径。讨论了支持向量机在导航星选取优化中进行应用的分类算法, 构建了导航星分类器, 并以导航星的选取为例进行了试验论证。试验表明: 基于SVM 的导航星分类器对简化导航星的筛选过程优化导航星表的 相似文献
17.
提出通过建立验证性能指标用遗传算法优化最小二乘支持向量机的有关参数并进行时间序列预测。将最小二乘支持向量机以铁路客运市场数据进行训练和测试,并与传统的BP网络预测模型相比较,结果证明,该模型的预测精确度是令人满意的,提出的方法是可行的。 相似文献
18.
针对最小二乘支持向量机(LS-SVM)在时间序列预测中的参数不确定问题,在训练阶段,使用结合了全局搜索和局部搜索的免疫文化基因算法来进行参数寻优。实验中通过对Lorenz时间序列和建筑能耗的两组预测实验,对比了免疫文化基因算法、遗传算法和网格搜索算法对LS-SVM参数的优化效果,证明了免疫文化基因算法的优化效果最好,且LS-SVM的预测精度比支持向量机(SVM)和BP网络预测都要高。 相似文献
19.
针对最小二乘支持向量机特征选择及参数优化问题,提出了一种基于PSO的LS-SVM特征选择与参数同步优化算法。首先产生若干种群(特征子集),然后用PSO算法对特征及参数进行优化。在UCI标准数据集上进行的仿真实验表明,该算法可有效地找出合适的特征子集及LS-SVM参数,且与基于遗传算法的最小二乘支持向量机算法(GALS-SVM)和传统的LS-SVM算法相比具有较好的分类效果。 相似文献