首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
炭纤维热处理对C/C复合材料力学性能的影响   总被引:1,自引:0,他引:1  
采用化学气相沉积工艺对未处理和2 500℃热处理的炭纤维预制体进行致密化,对致密化后的C/C复合材料进行弯曲力学性能测试,借助偏光显微镜和扫描电子显微镜观察热解炭的组织、纤维的表面和弯曲试样断口的形貌.结果显示:高温热处理后,纤维表面变的更加光滑,表面出现很多沿纤维轴向的沟槽;致密化后的两种C/C复合材料的基体消光角约为21°,均为高织构热解炭;与未处理纤维增强C/C复合材料相比,经高温热处理后纤维增强的C/C复合材料的弯曲强度和模量均大幅下降,断裂特征由脆性转变为典型的假塑性,断口处有大量纤维拔出,纤维表面未粘附热解炭,表明对纤维进行高温热处理显著降低了纤维和热解炭基体的界面结合强度,导致材料强度降低,断裂呈假塑性.  相似文献   

2.
以碳毡为基底原位生长了碳纳米管(CNTs),借助化学气相渗透制备了CNTs-C/C复合材料。研究了催化剂含量对碳纳米管生长的影响以及不同含量碳纳米管对C/C复合材料弯曲性能的影响。结果表明:催化剂对CNTs产量影响较大,且含量越多,生成的CNTs量越大;原位生长CNTs引入的催化剂会导致CNTs-C/C复合材料弯曲性能变差;CNTs的加入改变了热解碳的沉积行为,诱导了球状和锥状小尺寸热解碳的形成,减少了微裂纹的出现。适量CNTs能提高C/C复合材料的弯曲强度和模量,并改善材料的断裂行为。  相似文献   

3.
粗糙层组织结构2D-C/C复合材料的制备及特性   总被引:2,自引:0,他引:2  
在沉积温度为1080-1200℃、沉积总压力为10 kPa和气体滞留时间为0.01 s的条件下,以天然气为碳源,以氮气为载气,使用新型ICVI工艺对预制体初始密度为0.43 g/cm3(纤维体积分数25%)的2D针刺整体炭毡进行致密化,在150 h内制备出表观密度为1.75 g/cm3的C/C复合材料.用偏光显微镜和高分辨扫描电镜观察了热解碳基体的微观组织结构,分析了三点弯曲试样的断口形貌.结果表明:制备的C/C复合材料具有粗糙层(RL)组织结构,试样的弯曲强度为164.77 Mpa、模量为21.34 Gpa,表现为阶梯式失效,断裂行为呈现出明显的假塑性.  相似文献   

4.
采用电沉积法与化学气相渗透(CVI)法将碳纳米管(CNTs)分别引入到碳纤维表面和SiC基体中,制得了不同物相电沉积CNTs的C/SiC复合材料(CNTs-C)/SiC和C/(CNTs-SiC)。研究了CNTs沉积物相对C/SiC复合材料力学性能的影响,分析了不同CNTs沉积物相的C/SiC复合材料的拉伸强度及断裂机制。结果表明:相较于未加CNTs的C/SiC复合材料,CNTs沉积到碳纤维表面的(CNTs-C)/SiC复合材料的拉伸强度提高了67.3%,断裂功提高了107.2%;而将CNTs引入到SiC基体中的C/(CNTs-SiC)复合材料的断裂功有所降低,拉伸强度也仅提高了6.9%,CNTs没有表现出明显的增强增韧效果;C/(CNTs-SiC)复合材料与传统的C/SiC复合材料有相似的断裂形貌特征,断裂拔出机制类似,主要为纤维增强增韧,CNTs的作用不明显。  相似文献   

5.
采用ZrOCl2溶液浸渍法把锆化合物引入碳纤维预制体, 经热处理、热梯度化学气相渗透致密化和高温石墨化工艺制备了C/C-ZrC复合材料。性能测试结果表明, C/C复合材料的弯曲强度和模量随ZrC含量的增加而增大, ZrC含量为12.08wt%时, 其强度和模量分别为42.5 MPa 和9.6 GPa, 比未改性试样分别提高了70.0%和43.3%。基体中结合较弱的微米级ZrC颗粒的存在不利于碳基体强度的提高, 但其对材料最终性能的影响是次要的, 碳基体中亚微米/纳米级ZrC颗粒的存在和良好的ZrC-C界面结合, 提高了碳基体的强度和模量, 进而提高了复合材料的最终性能。  相似文献   

6.
设计了两种不同结构的预制体,即碳布 碳毡(1#预制体)、无纬布 碳毡(2#预制体),经化学气相沉积(CVD)与浸渍树脂相结合的致密化工艺制备出了高密度的增强毡C/C复合材料.结果表明:1#、2#预制体制备的C/C材料表现出了良好的力学性能,其拉伸强度分别达61.25MPa和53.12MPa,其中2#材料的拉伸破坏表现出了假塑性.结合材料的微观形貌研究了预制体结构、界面对C/C复合材料拉伸性能的影响.  相似文献   

7.
2D C/C复合材料微观结构与力学性能的研究   总被引:2,自引:0,他引:2  
采用等温化学气相渗透方法,通过调整沉积工艺,制备了具有不同微观组织结构的2D C/C复合材料.利用偏光显微镜(PLM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)结合选区电子衍射(SAED),研究了热解炭基体微观组织结构,借助万能试验机测试了材料的三点弯曲性能.结果表明:层状高织构(HT)热解炭基体占优时C/C复合材料表现为假塑性断裂;扁平片状中织构(MT)热解炭与颗粒状各向同性层热解炭(ISO)有利于提高材料的弯曲强度;HT基体与炭纤维界面结合良好,界面处不存在非HT织构,但取向角(OA)略有增大.  相似文献   

8.
缪花明  刘荣军  王衍飞  李俊生  李端  万帆 《材料工程》1990,(收录汇总):142-148
采用不同面密度和丝束大小的碳纤维布,通过不同z向缝合方式编织了两种碳布叠层结构的碳纤维预制体,再经化学气相渗透法(chemical vapor infiltration,CVI)与气相渗硅法(gaseous silicon infiltration,GSI)联用制备了C/C-SiC复合材料。研究了碳纤维预制体结构对CVI-GSI C/C-SiC复合材料微观结构与力学性能的影响。结果表明,由纤维体积分数与C/C素坯密度都相同的预制体所制备的两种复合材料的密度、各相组成、结构与性能均大不相同。较小的碳纤维丝束(1K)和碳布面密度(92 g/m^(2)),以及锁式缝合留下的较大孔隙为GSI反应中Si蒸气的渗透提供了更加充足的通道,最终制备的T1复合材料孔隙率低、结构均匀、性能更高,其弯曲强度、模量和断裂韧度分别为300.97 MPa,51.75 GPa,11.32 MPa·m^(1/2)。初始预制体结构和C/C中间体结构的综合调控是CVI-GSI联用工艺制备高性能C/C-SiC复合材料的关键。  相似文献   

9.
在沉积温度为1080--1200℃、沉积总压力为10 kPa和气体滞留时间为0.01 s的条件下, 以天然气为碳源, 以氮气为载气, 使用新型ICVI工艺对预制体初始密度为0.43 g/cm$^{3}$(纤维体积分数25%)的2D针刺整体炭毡进行致密化,
在150 h内制备出表观密度为1.75 g/cm3的C/C复合材料. 用偏光显微镜和高分辨扫描电镜观察了热解碳基体的微观组织结构, 分析了三点弯曲试样的断口形貌. 结果表明: 制备的C/C复合材料具有粗糙层(RL)组织结构, 试样的弯曲强度为164.77 MPa、模量为21.34 GPa, 表现为阶梯式失效, 断裂行为呈现出明显的假塑性.  相似文献   

10.
以丙烯为碳源, FeCl3·6H2O为催化剂, 采用化学气相沉积法(CVD)在碳毡和不同密度的C/C复合材料上原位气相生长碳纤维(VGCFs) , 并以含原位生长VGCFs的碳毡和不同密度的C/C复合材料为基体制备VGCFs-C/C复合材料。研究了反应压力、基体密度对VGCFs生长情况的影响, 借助扫描电镜(SEM)、光学显微镜观察原位生长VGCFs的形貌及基体原位生长VGCFs后热解炭形貌的变化, 并对比研究了C/C复合材料和VGCFs-C/C复合材料的弯曲性能。研究结果表明, 反应压力为3700 Pa, 基体密度低的情况更有利于VGCFs的生长; 原位生长的VGCFs改变了纤维表面热解炭的沉积形貌, 使得热解炭和碳纤维的结合面之间形成具有铆钉作用的球状结构, 增强了界面结合力, 从而提高了原位生长的高VGCFs含量样品的弯曲强度。  相似文献   

11.
以萘为基体碳源,Lewis酸为催化剂,通过对芳烃小分子的催化缩聚建立了一种新型原位聚合C/C复合材料的增密方法。分别对两种不同密度的炭纤维增强C/C复合材料预制体进行致密化处理,研究了原位增密次数对材料体积密度、电阻率、弯曲强度和断面形貌的影响。结果表明:经过五次致密化循环,样品密度分别由原来的1.05 g/cm3和1.68g/cm3提高到1.52g/cm3和1.83g/cm3,电阻率由4.44mΩ.cm和0.84mΩ.cm降至1.09mΩ.cm和0.28mΩ.cm,弯曲强度由26MPa和86MPa增至95MPa和211MPa,说明原位聚合增密方法非常有利于快速提高复合材料的密度和其他物理性能,是一种有前途的增密新途径。  相似文献   

12.
Wet impregnation with phenolic resin and P-CVI methods were used to manufacture C/C composites. The influence of impregnation process of porous 2D carbon fibre substrate with resin and pyrocarbon deposited by CVD technique on mechanical properties of formed composites was studied. The results indicate that using P-CVI method large pores remain in the matrix resulting in lower mechanical strength. This fraction does not undergo any changes during thermal treatment. The flexural modulus of C/C composites depends mainly on the type of reinforcing fibres. The values of moduli measured in composites obtained by both methods do not differ significantly. Comparison of two methods of fabrication of C/C composite show that much better strengths can be achieved by forming the carbon matrix in solid state.  相似文献   

13.
采用快速化学液相气化渗透法制备了2D-C/C复合材料,沉积温度为1200-1250℃, 系统压力约0.1MPa.利用偏光显微镜及扫描电子显微镜观察了不同沉积温度制备的基体热解碳的微观组织结构及断口形貌.实验结果表明,1200℃沉积的基体热解碳中粗糙层组织占大多数,其弯曲强度较高、韧性较低; 1250℃的基体热解碳呈现为光学各向异性程度不同的光滑层/粗糙层交替层状组织,其弯曲强度较低、韧性较高,具有非脆性断裂行为.不同微观结构的材料具有不同的强度及断裂模式,除了纤维/基体间界面结合强度不同外,不同温度沉积得到的热解碳微观结构的不同引起裂纹在不同微观结构碳层内的扩展阻力也会不同.此外,裂纹在光滑层/粗糙层界面处的偏转会导致断裂面的高低不平,从而使后者韧性增强.  相似文献   

14.
采用液相浸渍-炭化和CVI复合工艺, 制备出在炭纤维和热解炭之间具有中间相沥青过渡层的炭/炭复合材料, 借助偏光显微镜、扫描电镜、透射电镜以及力学性能测试研究了所制备的炭/炭复合材料的微观结构与力学性能. 结果表明: 在偏光显微镜下中间相沥青炭的光学活性高于热解炭的光学活性, 中间相沥青炭在SEM和TEM下均呈片层条带状结构, 热解炭在SEM下呈“皱褶状”片层结构, 在TEM下为粒状结构; 在HRTEM下, 中间相沥青炭、热解炭和炭纤维的晶化程度依次降低. 在加载过程中, 材料内部多层次的界面通过改变裂纹扩展路径而延缓其扩展速度, 在断口形貌上体现出锯齿状的断裂形式, 纤维拔出长度适中, 材料表现出韧性破坏的断裂特征. 材料具有较高的力学性能, 抗弯强度达到244MPa, 断裂韧性达到9.7MPa·m1/2.  相似文献   

15.
中间相沥青基碳/碳复合材料的组织与性能   总被引:7,自引:0,他引:7  
以3K PAN基碳纤维为增强体,以中间相沥青为基体前驱体,采用压力浸渍-碳化工艺制备出2D中间相沥青基碳/碳复合材料.研究分析了材料的偏光组织结构、弯曲性能及弯曲断口形貌,结果表明:基体碳的组织结构随碳化压力的不同而变化,低压时以小域组织为主,高压时以广域流线型组织为主;材料的抗弯强度、密度随碳化压力的增加而增高,最高抗弯强度可达278MPa;断裂特征与材料的密度、界面结合状况有关,密度较高、界面结合适中时,弯曲断口以纤维断裂、纤维拔出为主,材料具有韧性断裂特征.  相似文献   

16.
两种双基体C/C复合材料的微观结构与力学性能   总被引:1,自引:0,他引:1  
借助偏光显微镜、扫描电镜以及力学性能测试研究了两种双基体C/C复合材料的微观结构与力学性能。结果表明:基体碳在偏光显微镜下呈现出热解碳的光滑层组织,沥青碳的各向同性、镶嵌和流域组织。在SEM下普通沥青碳为"葡萄状"结构,中间相沥青碳为片层条带状结构。具有多层次界面结构的材料可以提高材料的弯曲强度,改善材料的断裂韧度,两种材料在载荷-位移曲线中载荷为台阶式下降,呈现出假塑性断裂特征。材料A和材料B的弯曲强度分别为206.68,243.66MPa,断裂韧度分别为8.06,9.66MPa·m1/2,材料B的弯曲强度、断裂韧度均优于材料A。  相似文献   

17.
《复合材料学报》2008,25(5):91-97
以针刺碳纤维整体毡为预制体,采用化学气相渗透工艺对预制体纤维进行PyC/SiC/TaC的多层复合模式的涂层改性, 然后采用化学气相渗透和热固性树脂浸渍-化进行增密,制备出新型C/C复合材料。对复合材料的微观结构和力学性能进行了研究。结果表明:包覆在碳纤维表面的PyC/SiC/TaC多层结构均匀致密、无裂纹,在C/C复合材料中形成空间管状网络结构;改性后C/C复合材料的抗弯强度和韧性均大大提高, 平均抗弯强度达到522 MPa,断裂位移达到1.19mm;复合材料弯曲断裂形式表现为脆性断裂,经过2000℃高温热处理以后,复合材料的抗弯强度下降,但最大断裂位移增大,弯曲断裂形式由脆性断裂转变为良好的假塑性断裂。   相似文献   

18.
碳纤维增强的纳米碳化硅陶瓷基复合材料力学性能优良,且具有一定的生物相容性,因此可作为一种新型的可取代钛合金的全尺寸整体人工骨骼。研究了具有三向正交结构的T300和M30碳纤维预制体对C/SiC复合材料制备过程和抗弯强度的影响规律。以聚碳硅烷为先驱体,以二乙烯基苯为溶剂和交连剂,采用聚合物浸渍热解法制备了C/SiC复合材料,采用阿基米德排水法测量其密度和气孔率,采用三点抗弯法测量其抗弯强度。M30 C/SiC抗弯强度比T300 C/SiC高6.7%,表明碳纤维弹性模量对复合材料基体开裂强度有显著影响,并通过增加纤维径向强度以及承担载荷的比例提高了复合材料的断裂强度。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号