首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complete Zn2+ exchange of two single crystals of zeolite X (Na92Si100Al92O384) was attempted at 80°C from aqueous Zn(NO3)2 (pH=5.5 at 23°C). The structures of crystal 1 (partially dehydrated by evacuation at 23°C and 10−3 Torr for two days) and crystal 2 (fully hydrated) were determined by X-ray diffraction techniques in the cubic space group Fd at 23°C (ao=24.750(5) and 24.872(6) Å, respectively). They were refined using all intensities to the final error indices R1=0.126 and 0.116 based on the 428 and 348 reflections, respectively, for which Fo>4σ(Fo). Each crystal has about 54 Zn2+ ions per unit cell, indicating the uptake of eight excess Zn(OH)2 molecules. In both crystals, further extensive hydrolysis of Zn2+ is seen. Many non-framework oxygens were not found. In crystal 1, 34 Zn2+ ions per unit cell occupy conventional cationic sites: 10 are at site I, 12 at site II, and 12 at site III. Three Zn2+ ions each coordinate to a framework oxygen at a non-conventional site in the supercages. Three Zn2+ ions at the centers of sodalite cavities each coordinate tetrahedrally to four non-framework oxygens to give (likely) Zn(OH)2(H2O)2 which hydrogen bonds multiply to the zeolite framework. At three supercage positions, about 14 Zn2+ ions that do not coordinate to the zeolite framework are found. Per unit cell, 37 H3O+ ions are found: 20 at site I and 17 at site II. It is presumed, considering the number of H3O+ ions, that the latter 14 Zn2+ ions are hydrolyzed Zn2+ ions, likely hydrated Zn(OH)2 molecules, some likely bridging. In crystal 2, 33 Zn2+ ions per unit cell are found at conventional cationic sites: two at site I, 14 at two different sites I, seven at site II, and 10 at site III. As in crystal 1, three Zn2+ ions each coordinate to a framework oxygen at a non-conventional site in the supercage. At three supercage positions, about 18 Zn2+ ions that do not coordinate to the zeolite framework are found. Per unit cell, 40 H3O+ ions are found: 18 at site II and 22 at site II. Only about 16 non-framework oxygens were found per unit cell: eight water molecules in the supercages and, in the sodalite cages, eight hydroxide ions which participate in the formation of two nearly cubic Zn4(OH)44+ clusters.  相似文献   

2.
In the present study, we have examined sulfation of cerium oxide via impregnation of (NH4)2SO4, followed by heating in the temperature range of 220–720°C, using Raman Spectroscopy. Based on the SO and SO stretching frequencies in the range of 900–1400 cm−1, a wide range of surface oxysulfur species and bulk cerium-oxy-sulfur species are identified. At 220°C, a mixture of (NH4)2SO4 crystals, SO2−4(aq) and HSO1−r(aq) is found to have formed on ceria's surface, whereas complete conversion of (NH4)2SO4 to SO2−4(aq) and HSO1−4(aq) occurs at 280°C. At 350°C, formation of a mixture of surface pyrosulfate S2O2−7(surf.0, consisting of two SO oscillators and a bulk type compound identified as Ce(IV)(SO4)x(SO3)2−x (0 < x < 2) have been observed. Upon introduction of moisture, the former transforms to HSO1−4(surf.), whereas the latter remains unchanged. At 400°C, only the bulk type compound can be observed. At 450°C, only Ce2(SO4)3 is generated and remains stable until 650°C. Further increase in the temperature to 720°C results in the formation of CeOSO4. The present study not only provides a more thorough understanding of the sulfation of cerium oxide at a molecular level, but also demonstrates that Raman spectroscopy is a highly effective technique to characterize sulfation of metal oxides.  相似文献   

3.
Complete Ni2+ exchange of a single crystal of zeolite X of composition Na92Si100Al92O384 per unit cell was attempted at 73°C with flowing aqueous 0.05 M NiCl2 (pH=4.3 at 23°C). After partial dehydration at 23°C and ≈10−3 Torr for two days, its structure, now of composition Ni2(NiOH)35(Ni4AlO4)2(H3O)46Si101Al91O384 per unit cell, was determined by X-ray diffraction techniques at 23°C (space group Fd , a0=24.788(5) Å). It was refined using all intensities; R1=0.080 for the 236 reflections for which Fo>4σ(Fo), and wR2=0.187 using all 1138 unique reflections measured. At four crystallographic sites, 45 Ni2+ ions were found per unit cell. Thirty of these are at two different site III′ positions. Twenty of those are close to the sides of 12-rings near O–Si–O sequences, where each coordinates octahedrally to two framework oxygens, to three water molecules which hydrogen bond to the zeolite framework, and to an OH ion. The remaining 10 are near O–Al–O sequences; only three members of a likely octahedral coordination sphere could be found. In addition, two Ni2+ ions are at site I, eight are at site I′, and five are at site II. Forty six H3O+ ions per unit cell, 24 at site II′ and 22 at site II, each hydrogen bond triply to six rings of the zeolite framework. Each of the 22 H3O+ ions also hydrogen bonds to a H2O molecule that coordinates to a site III′ Ni2+ ion. Six of the eight sodalite cages each contain four H3O+ ions at site II′; the remaining two each contains a tetrahedral orthoaluminate anion at its center. Each tetrahedral face of each orthoaluminate ion is centered by a site I′ Ni2+ ion to give two Ni4AlO4 clusters. The five site II Ni2+ ions each coordinate to a OH ion. With 46 H3O+ ions per unit cell, the great tendency of hydrated Ni2+ to hydrolyze within zeolite X is demonstrated. With a relatively weak single-crystal diffraction pattern, with dealumination of the zeolite framework, and with an apparent decrease in long-range Si/Al ordering likely due to the formation of antidomains, this crystal like others treated with hydrolyzing cations appears to have been damaged by Ni2+ exchange and partial dehydration.  相似文献   

4.
Preparations and physico-chemical characterizations of NASICON-type compounds in the system Li1+xAlxA2−xIV(PO4)3 (AIV=Ti or Ge) are described. Ceramics have been fabricated by sol-gel and co-grinding processes for use as ionosensitive membrane for Li+ selective electrodes. The structural and electrical characteristics of the pellets have been examined. Solid solutions are obtained with Al/Ti and Al/Ge substitutions in the range 0≤x≤0·6. A minimum of the rhombohedral c parameter appears for x about 0·1 for both solutions. The grain ionic conductivity has been characterized only in the case of Ge-based compounds. It is related to the carrier concentration and the structural properties of the NASICON covalent skeleton. The results confirm that the Ti-based framework is more calibrated to Li+ migration than the Ge-based one. A grain conductivity of 10−3 S cm−1 is obtained at 25°C in the case of Li1·3Al0·3Ti1·7(PO4)3. A total conductivity of about 6×10−5 S cm−1 is measured on sintered pellets because of grain boundary effects. The use of such ceramics in ISE devices has shown that the most confined unit cell (i.e. in Ge-based materials) is more appropriate for selectivity effect, although it is less conductive.©  相似文献   

5.
The standard molal potentials E°m of the Hg/Hg2(OPr)2, OPr electrode at 15°, 20°, 25°, 30° and 35° C have been determined. The E°m values obtained are 0.5114, 0.5072, 0.5031, 0.4988 and 0.4942 V respectively, which can be fitted to the equation Edgm/V = 0.5031 −8.56 × 10−4 (itt/°C − 25)−3.0588 × 10−6 (t/ °C -25)2. The changes in standard free energy, entropy and enthalpy for the cell reaction have been calculated.  相似文献   

6.
A new proton-conductive composite of NH4PO3–(NH4)2Mn(PO3)4 was synthesized and characterized as a potential electrolyte for intermediate temperature fuel cells that operated around 250 °C. Thermal gravimetric analysis and X-ray diffraction investigation showed that (NH4)2Mn(PO3)4 was stable as a supporting matrix for NH4PO3. The composite conductivity, measured using impedance spectroscopy, improved with increasing the molar ratio of NH4PO3 in both dry and wet atmospheres. A conductivity of 7 mS cm−1 was obtained at 250 °C in wet hydrogen. Electromotive forces measured by hydrogen concentration cells showed that the composite was nearly a pure protonic conductor with hydrogen partial pressure in the range of 102–105 Pa. The proton transference number was determined to be 0.95 at 250 °C for 2NH4PO3–(NH4)2Mn(PO3)4 electrolyte. Fuel cells using 2NH4PO3–(NH4)2Mn(PO3)4 as an electrolyte and the Pt–C catalyst as an electrode were fabricated. Maximum power density of 16.8 mW/cm2 was achieved at 250 °C with dry hydrogen and dry oxygen as the fuel and oxidant, respectively. However, the NH4PO3–(NH4)2Mn(PO3)4 electrolyte is not compatible with the Pt–C catalyst, indicating that it is critical to develop new electrode materials for the intermediate temperature fuel cells.  相似文献   

7.
The AgO-Mg battery cell shows great interest at slow rates of discharge. A slow-corroding magnesium alloy (AZ 61) is used, and the faradaic yield is always greater than 70%. The electrolyte solution is 2·4 M NaClO4, 1·6 M LiClO4, 0·1 M NaBO2. The battery works in the temperatures range −30°C-+60°C. At ordinary temperature, the average discharge voltage is 1·6 V. The optimal distance between the electrodes is 2 mm. The minimum volume is in the order of 3·3 cm3/Ah. When the battery is started it can be used over several weeks.

Zusammenfassung

Die Silberoxid-Magnesium-Batterie ist für kleine Entladungsgeschwindigkeiten interessant. Man verwendet eine langsam korrodierende Magnesiumlegierung (AZ 61), deren faradaysche Leistung immer grösser als 70% ist. Der Elektrolyt besteht aus 2,4 M/1 NaClO4; 1,6 M/1 LiCl; 0,1 M/1 NaBO2. Die Batterie funktioniert zwischen −30 und +60°C. Bei Raumtemperatur ist die durchschnittliche Entladungsspannung 1,6 V. Der optimale Elektrodenabstand beträgt 2 mm. Die Mindestelektrolytmenge ist ungefähr 3,3 cm3/Ah. Wird die Batterie in Betrieb gesetzt, kann sie während mehreren Wochen gebraucht werden.  相似文献   


8.
Fine powders of submicron-sized crystallites of BaTiO3 were prepared at 85–130°C by the hydrothermal method, starting from TiO2.ξH2O gel and Ba(OH)2 solution. The products obtained below 110°C incorporated considerable amounts of H2O and OH in the lattice. As-prepared BaTiO3 is cubic and converts to the tetragonal phase after heat treatment at 1200°C, accompanied by the loss of residual OH ions. Hydrothermal reaction of SnO2.ξH2O gel with Ba(OH)2 at 150–260°C gives rise to the hydrated phase, BaSn(OH)6.3H2O, due to the amphoteric nature of SnO2.ξH2O which stabilises Sn(OH)62− anions in basic media. On heating in air or releasing the pressure in situ at 260°C, BaSn(OH)6.3H2O converts to BaSnO3 through an intermediate, BaSnO(OH)4. Solid solutions of Ba(Ti,Sn)O3 are directly formed from (TiO2 + SnO2)..ξH2O gel up to 35 mol% SnO2. At higher Sn contents, the hydrothermal products are mixtures of BaSn(OH)6.3H2O and BaTiO3, which on annealing at 1000°C result in monophasic Ba(Ti,Sn)O3. The sintering characteristics and the dielectric properties of the ceramics prepared out of these fine powders are presented. The dielectric properties of fine-grained Ba(Ti,Sn)O3 ceramics are explained on the basis of the prevailing diffuse phase transition behaviour.  相似文献   

9.
The synthesis of a novel 3D aluminophosphate is described. The thermal properties of the material were investigated, and the existence of three high-temperature variants was revealed. The crystal structures of the as-synthesized material (UiO-26-as) and the material existing around 250°C (UiO-26-250) were solved from powder X-ray diffraction data. UiO-26-as with the composition [Al4O(PO4)4(H2O)]2−[NH3(CH2)3NH3]2+ crystallizes in the monoclinic space group P21/c (no. 14) with a=19.1912(5), b=9.3470(2), c=9.6375(2) Å and β=92.709(2)°. It exhibits a 3D open framework consisting of connections by PO4 tetrahedra with AlO4 tetrahedra, AlO5 trigonal bipyramids and AlO5(H2O) octahedra forming two types of layers stacked along [1 0 0] and connected by Al–O–P bondings. The structure possesses a 1D 10-ring channel system running along [0 0 1], in which doubly protonated 1,3-diaminopropane molecules are located. UiO-26-250 with the composition [Al4O(PO4)4]2−[NH3(CH2)3NH3]2+ crystallizes in the monoclinic space group P21/c with a=19.2491(4), b=9.27497(20), c=9.70189(20) Å and β=93.7929(17)°. The transformation to UiO-26-250 involves removal of the water molecule which originally is coordinated to aluminum. The rest of the structure remains virtually unchanged. The crystal structures of the two other variants existing around 400 (UiO-26-400) and 600°C (UiO-26-600) remain unknown.  相似文献   

10.
Tetrahydroborate sodalite formation was investigated in the system Na2O–SiO2–Al2O3–NaBH4–H2O under mild hydrothermal conditions. Due to the high degree of decomposition of hydroborates in aqueous solutions synthesis conditions were tuned by variation of the parameters alkalinity, liquid/solid ratio, reaction temperature and reaction time. The insertion of 8–16 molar NaOH solution was crucial for the higher stability of pure tetrahydroborate salt under strong alkaline conditions. Synthesis at 393 K and 24 h reaction time reveal tetrahydroborate sodalite Na8[AlSiO4]6(BH4)2 beside a small amount of amorphous material within the total batch. Structure, composition and thermal stability of this new sodalite was investigated using XRD, NMR, infrared and TG/DTA methods. The crystal structure of tetrahydroborate sodalite has been refined in the space group P-43n with a = 891.61(2) pm. The Si- and Al-atoms of the aluminosilicate framework are completely ordered. The boron atoms of the tetrahydroborate anions are located at the centre of the sodalite cage whereas the hydrogen atoms are positionally disordered. Na8[AlSiO4]6(BH4)2 shows a high stability under inert gas conditions. At atmospheric conditions the group can be oxidized to borate and boroxide anions suggesting the formation of hydrogen which leaves the sodalite cages. Future investigation of reloading properties of the oxidized form could be highly interesting for the hydrogen storage capabilities of these sodalites.  相似文献   

11.
Supported Au catalysts Au-Au+-Clx/Fe(OH)y (x < 4, y ≤ 3) and Au-Clx/Fe2O3 prepared with co-precipitation without any washing to remove Cl and without calcining or calcined at 400 °C were studied. It was found that the presence of Cl had little impact on the activity over the unwashed and uncalcined catalysts; however, the activity for CO oxidation would be greatly reduced only after Au-Au+-Clx/Fe(OH)y was further calcined at elevated temperatures, such as 400 °C. XPS investigation showed that Au in catalyst without calcining was composed of Au and Au+, while after calcined at 400 °C it reduced to Au0 completely. It also showed that catalysts precipitated at 70 °C could form more Au+ species than that precipitated at room temperatures. Results of XRD and TEM characterizations indicated that without calcining not only the Au nano-particles but also the supports were highly dispersed, while calcined at 400 °C, the Au nano-particles aggregated and the supports changed to lump sinter. Results of UV–vis observation showed that the Fe(NO3)3 and HAuCl4 hydrolyzed partially to form Fe(OH)3 and [AuClx(OH)4−x] (x = 1–3), respectively, at 70 °C, and such pre-partially hydrolyzed iron and gold species and the possible interaction between them during the hydrolysis may be favorable for the formation of more active precursor and to avoid the formation of Au–Cl bonds. Results of computer simulation showed that the reaction molecular of CO or O2 were more easily adsorbed on Au+ and Au0, but was very difficultly absorbed on Au. It also indicated that when Cl was adsorbed on Au0, the Au atom would mostly take a negative electric charge, which would restrain the adsorption of the reaction molecular severely and restrain the subsequent reactions while when Cl was adsorbed on Au+ there only a little of the Au atom take negative electric charge, which resulting a little impact on the activity.  相似文献   

12.
M. Yoshizawa  E. Marwanta  H. Ohno   《Polymer》2000,41(26):9049-9053
Poly(ethylene oxide) (PEO) of molecular weight 1000 (PEO1000) containing lithium benzenesulfonate (LiBs) (PEO1000/LiBs), PEO derivatives having benzenesulfonate groups on both chain ends (PEO1000–(BSLi)2), or 1-ethyl-2,3-dimethylimidazolium bromide (ImB), were each blended with natural rubber (NR). The ionic conductivity was measured from AC impedance values. The ionic conductivity of the mixture of NR and PEO1000/LiBs (40 wt%) was about 10−6 S cm−1 at 50°C; this mixture retained rubbery physical characteristics. At NR content of 10 wt%, the ionic conductivity of the mixture (NR/PEO1000/LiBs) was 2.7×10−5 Scm−1 at 50°C, approximately 10 times higher than that of the bulk PEO/LiBs mixture. For mixtures of NR and PEO1000–(BSLi)2, no improvement in ionic conductivity by mixing was found. The ionic conductivity of the mixture of NR and ImB was about 10 times higher than for the bulk of PEO1000–(BSLi)2 at a NR content of 10 wt%. We propose that the ionic conductivity of the mixture increases when an ion conducting matrix containing simple salt is added. On the other hand, the DSC curve for NR/PEO derivatives showed two Tgs based on the separate components, suggesting phase separation of the PEO derivative in the NR phase.  相似文献   

13.
Maria Andrei  Massimo Soprani 《Polymer》1998,39(26):7041-7047
A new class of polymer electrolytes, based on the interpenetrating polymer network approach, was obtained starting from functionalised macromers, of poly-ether nature, in the presence of a lithium salt (LiBF4, LiClO4, LiCF3SO3) and propylene carbonate (PC) or tetraethyleneglycol dimethylether (TGME), as plasticizers.

The macromers were synthesised by living polymerisation employing a HI/I2 system as the initiator. The macromer has a polymerisable end group, which can undergo radical polymerisation, attached to a monodisperse poly-vinylether, containing suitable ethylene oxide groups for ion coordination. Monomers and macromers were characterised by FTi.r., u.v.–vis, 1H- and 13C-n.m.r.

Self-consistent and easily handled membranes were obtained as thin films by a dry procedure using u.v. radiation to polymerise and crosslink the network precursors, directly on suitable substrates, in the presence of the plasticizer and the lithium salt. The electrolytic membranes were studied by complex impedance and their thermal properties determined by differential scanning calorimetry analysis.

Ionic conductivities (σ) were measured for PC and TGME-based membranes at various plasticizer and salt contents as a function of T (60 to −20°C). LiClO4/PC/PE electrolytes, with 3.8% (w/w) salt and 63% PC, have the highest σ (1.15×10−3 and 3.54×10−4 S cm−1 at 20°C and −20°C, respectively). One order of magnitude lower conductivities are achieved with TGME; samples with 6% (w/w) LiClO4 and 45% (w/w) TGME exhibit σ values of 2.7×10−4 and 2.45×10−5 S cm−1 at 20°C and −20°C.  相似文献   


14.
The phase transition of hBN-cBN in the B-N-H-O system   总被引:1,自引:0,他引:1  
The physical-chemical processes are responsible for hBN-cBN conversion in the B-N-H-O system were studied in region of pressure 3.5–7.2 GPa and temperature up to 1400°C by means of in situ differential thermal analysis (DTA) and the quenched method. The absence of intermediate solid phases in products of the interaction of hBN with melts of anhydrous ammonium borates has confirmed the supposition about the activating effect of these melts on the kinetic of the conversion. A scheme of the part of T,c phase diagram on the (NH4)2O-B2O3 line was built at 6 GPa. Three peritectics corresponding to the dissociation of proposed NH4BO2, (NH4)2B4O7 and (NH4)4B10O17 were found. The connection of the lower-temperature limits of cBN synthesis regions with the found peritectics in the range of 5.5–7.2 GPa was established. The formal critical composition of the melt was 3(NH4)2O:7B2O3, because the appearance of cBN was fixed in the product beginning with just this composition. However, the question about critical melt composition activating hBN-cBN conversion has no correct solution without information about short-range order structure and relaxation kinetics of the melts. Two unknown anhydrous ammonium borates were found in HPHT products. One of these compounds was determined to be (NH4)4B10O17. It crystallizes in a orthorhombic cell with a=12.82 Å, b=11.30 Å, c=9.52 Å, a measured density of 2.10 g cm−3, a calculated density of 2.21 g cm−3 at Z=4. At normal conditions (NH4)4B10O17 is metastable but it can be preserved a long time in a “dry” atmosphere.  相似文献   

15.
An aqueous (NH4)2CO3 coprecipitation method, based on that of Groppi et al. [Appl. Catal. A 104 (1993) 101–108] was used to synthesize Sr1−xLaxMnAl11O19− hexaaluminates. These materials were first synthesized by alkoxide hydrolysis. This synthesis route requires special handling of the starting materials and is not likely to be commercially practical. The materials prepared by (NH4)2CO3 coprecipitation have similar surface areas as those prepared by the alkoxide hydrolysis method. Their CH4 oxidation activity, measured as the temperature needed for 10% conversion of methane, is higher than those prepared by alkoxide hydrolysis. The La-substantiated material, LaMnAl11O19−, shows high surface area with 19.3 m2/g after calcination at 1400°C for 2 h. It is active for CH4 oxidation with T10% at 450°C using 1% CH4 in air and 70 000 cm3/h g space velocity. The stability and activity of LaMnAl11O19− prepared by (NH4)2CO3 coprecipitation method is a simple and important step forward for the application of CH4 catalytic combustion for gas turbines.  相似文献   

16.
Pdn+/Cen+/Na+/γ-Al2O3-type materials used as FCC additives for CO/NOx control were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy and in situ FTIR. The EXAFS data indicate that in freshly prepared samples palladium is present in the form of highly dispersed PdO species. Reduction with H2 at 500 °C leads to the formation of small Pd clusters incorporating on average approximately six to eight metal atoms at a Pd−Pd bond distance of 2.76 Å. All components of these materials can interact with NO and promote the formation of nitrate/nitrite species, essentially “trapping” NOx species on the catalyst surface. However, the Na+ species dominate the surface chemistry and readily form sodium nitrates with a characteristic IR band at 1370–1385 cm−1. Finally, hydroxyls from the support are also actively participating in the formation of HNOx type compounds with characteristic stretching vibrations in the 3500–3572 cm−1 region.  相似文献   

17.
The influence of the thermal treatments of Pt/SO42−-Zr(OH)4 catalysts on the activity for the metal-catalyzed reaction of cyclohexane dehydrogenation and the acid-catalyzed reaction of n-butane isomerization, were studied in this work. A mutual antagonism between the conditions for optimal activity of the acid and metal functions was found and was seemingly related to the crystallization of the support. In order to be able to isomerize n-butane, SO42−-Zr(OH)4 had first to be calcined in air at Tcalc>400 °C. The onset of activity and strong acid properties coincided with the appearance of the tetragonal crystal phase. SO42−-Zr(OH)4 supported Pt, prepared from chloroplatinic acid, was tried to be converted to the metal state (Pt0) in order to have full catalytic capacity. When Pt/SO42−-Zr(OH)4 was first calcined in air at Tcalc>400 °C, Pt remained in a seemingly oxidized state, with no de/hydrogenation properties even after reduction in H2 at 300 °C. Under certain conditions, Pt metal properties were improved: (i) calcining Pt/SO42−-Zr(OH)4 in air at Tcalc<400 °C; (ii) calcining Zr(OH)4 at Tcalc>400 °C before sulfating the support; and (iii) calcining Pt/SO42−-Zr(OH)4 in N2 instead of air. In these cases, though Pt dehydrogenation activity increased, the activity of the acid function decreased (iii) or was practically null ((i) and (ii)). The support was amorphous in case (i) and mainly monoclinic in case (ii). Sulfate loss and conversion into the monoclinic phase occurred in case (iii). As compared to sulfate-free Pt/ZrO2, sulfur poisoning always decreased the metal activity of sulfated catalysts but the decrease was higher for mainly tetragonal sulfate-doped catalysts. The final conclusion is that the optimum activation conditions for the metal and acid functions in Pt/SO42−-Zr(OH)4 are mutually excluding. The deleterious effect of SO42−-ZrO2 (SZ) on Pt metal activity is closely related to the growth and/or the presence of the tetragonal phase and cannot be prevented if a high activity of the acid function is demanded by the reacting system.  相似文献   

18.
The NO-H2-O2 reaction was studied over supported bimetallic catalysts, Pt-Mo and Pt-W, which were prepared by coexchange of hydrotalcite-like Mg-Al double layered hydroxides by Pt(NO2)42−, MoO42−, and/or WO42− and subsequent heating at 600 °C in H2. The Pt–Mo interaction could obviously be seen when the catalyst after reduction treatment was exposed to a mixture of NO and H2 in the absence of O2. The Pt-HT catalyst showed the almost complete NO conversion at 70 °C, whereas the Pt-Mo-HT showed a negligible conversion. Upon exposure to O2, however, Pt-Mo-HT exhibited the NO conversion at the lowest temperature of ≥30 °C, compared to ≥60 °C required for Pt-HT. EXAFS/XANES, XPS and IR results suggested that the role of Mo is very sensitive to the oxidation state, i.e., oxidized Mo species residing in Pt particles are postulated to retard the oxidative adsorption of NO as NO3 and promote the catalytic conversion of NO to N2O at low temperatures.  相似文献   

19.
Heterogeneous photocatalytic degradation of the pesticide Diuron (Nortox, 3-(3,4-dichlorophenyl)-1,1-dimethylurea) was carried under laboratory conditions to evaluate the potential use of this technology for in situ remediation. Soil samples were spiked with three Diuron concentrations (10, 50 and 100 mg kg−1), loaded with catalyst TiO2 and exposed to solar light (22°S and 47°W, with an averaged intensity of 2 mW cm−2 measured at 365 nm). Different catalyst loads (0, 0.1, 0.5, 1 and 2% w/w) were tested in Diuron contaminated soil (100 mg kg−1) for up to 120 h of exposure. Both the catalyst and the Diuron concentration show no influence on the kinetics of the pesticide degradation. The effects of water (10% w/w) and Ca(OH)2 (0.1% w/w) were also evaluated. Water increases the degradation rates, whereas the rise in the pH due to Ca(OH)2 addition shows no measurable effect on the degradation. The photocatalytic treatment using TiO2 combined with solar light is shown to be very efficient in the destruction of Diuron in the top 4 cm of contaminated soil, with the degradation rate markedly dependent on the irradiation intensity.  相似文献   

20.
The crystal structures of fully dehydrated Sr46–X [Sr46Si100Al92O384; a=25.214(7) Å] and of its ammonia sorption complex, Sr46–X·102NH3 [Sr46Si100Al92O384·102NH3; a=25.127(7) Å], have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd at 21(1)°C. The Sr46–X crystal was prepared by ion exchange in a flowing stream of aqueous 0.05 M Sr(ClO4)2 for 5 days followed by dehydration at 360°C and 2×10−6 Torr for 2 days. To prepare the ammonia sorption complex, another dehydrated Sr46–X crystal was exposed to 230 Torr of zeolitically dried ammonia gas for 1 h followed by evacuation for 12 h at 21(1)°C and 5×10−4 Torr. The structures were refined to the final error indices, R1=0.043 and Rw=0.039 with 466 reflections, and R1=0.049 and Rw=0.044 with 382 reflections, for which I>3σ(I). In dehydrated Sr46–X, all Sr2+ ions are located at two crystallographic sites. 16 Sr2+ ions are at the centers of the double six-rings, filling that site (site I, Sr–O=2.592(6) Å). The remaining 30 Sr2+ ions are in the supercage (site II); each extends 0.56 Å into the supercage from the plane of its three nearest oxygen atoms (Sr–O=2.469(6) Å). In the structure of Sr46–X·102NH3, the Sr2+ ions are located at three crystallographic sites: 12 are found at site I [Sr–O=2.652(10) Å]; four in the sodalite units (site I′) each coordinated to three framework oxygen atoms at 2.654(9) Å and also to three ammonia molecules at 2.76(8) Å. The remaining 30 Sr2+ ions lie at site II. Each extends 1.12 Å into the supercage where it coordinates to three framework oxygen atoms at 2.584(7) Å and also to three ammonia molecules at 2.774(24) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号