首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton‐conducting solid oxide fuel cells (H‐SOFC), using a proton‐conducting electrolyte, potentially have higher maximum energy efficiency than conventional oxygen‐ion‐conducting solid oxide fuel cells (O‐SOFC). It is important to theoretically study the current–voltage (JV) characteristics in detail in order to facilitate advanced development of H‐SOFC. In this investigation, a parametric modelling analysis was conducted. An electrochemical H‐SOFC model was developed and it was validated as the simulation results agreed well with experimental data published in the literature. Subsequently, the analytical comparison between H‐SOFC and O‐SOFC was made to evaluate how the use of different electrolytes could affect the SOFC performance. In addition to different ohmic overpotentials at the electrolyte, the concentration overpotentials of an H‐SOFC were prominently different from those of an O‐SOFC. H‐SOFC had very low anode concentration overpotential but suffered seriously from high cathode concentration overpotential. The differences found indicated that H‐SOFC possessed fuel cell characteristics different from conventional O‐SOFC. Particular H‐SOFC electrochemical modelling and parametric microstructural analysis are essential for the enhancement of H‐SOFC performance. Further analysis of this investigation showed that the H‐SOFC performance could be enhanced by increasing the gas transport in the cathode with high porosity, large pore size and low tortuosity.  相似文献   

2.
A mathematical model based on first principles is developed to study the effect of heat and electrochemical phenomena on a tubul solid oxide fuel cell (SOFC). The model accounts fordiffusion, inherent impedance, transport (momentum, heat and mass transfer) processes, internal reforming/shifting reaction, electrochemical processes, and potential losses (activation, concentration, and ohmic losses). Thermal radiation of fuel gaseous components is considered in detail in this work in contrast to other reported work in the literature. The effect of thermal radiation on SOFC performance is shown by comparing with a model without this factor. Simulation results indicate that at higher inlet fuel flow pressures and also larger SOFC lengths the effect of thermal radiation on SOFC temperature becomes more significant. In this study, the H2 and CO oxidation is also studied and the effect of CO oxidation on SOFC performance is reported. The results show that the model which accounts for the electrochemical reaction ofCO results in better SOFC performance than other reported models. This work also reveals that at low inlet fuel flow pressures the CO and H2 electrochemical reactions are competitive and significantly dependent on the CO/H2 ratio inside the triple phase boundary.  相似文献   

3.
李裕  叶爽  王蔚国 《化工学报》2016,67(4):1557-1564
建立一个天然气自热重整的固体氧化物燃料电池(SOFC)系统模型,利用Aspen Plus化工流程模拟软件链接基于Fortran语言编写的电堆模型,在质量守恒和能量守恒的基础上,分析不同参数对系统性能的影响。模拟结果表明:随着水碳比的增加,甲烷和一氧化碳的转化率增大,导致氢气和二氧化碳含量增加;氧碳比和系统效率在水碳比为1.5时达到最大。随着燃料利用率的增加,电流密度增大,导致空气过量系数增大,空气利用率降低;系统的总效率和净效率均随之增大。尾气温度随着水碳比和燃料利用率的增加均呈现下降趋势。系统的最大总效率和净效率分别为44.5%和39.2%。研究结果为进一步优化自热重整系统指明了方向。  相似文献   

4.
固体氧化物燃料电池(SOFC)趋向于直接使用甲烷天然气为燃料,确定甲烷在固体氧化物燃料电池阳极发生的化学与电化学反应非常重要.以Ni/YSZ为阳极、YSZ板做电解质、LSM为阴极,用涂浆法制作电解质支撑的电池,研究低浓度干甲烷在固体氧化物燃料电池中的反应.改变甲烷浓度、电池工作温度、电解质厚度,用在线色谱测量不同电流密度下,阳极出口气体产生速率.根据阳极出口气体产生速率变化,分析干甲烷在阳极的反应变化.通过氧消耗计算和转移电子数的分析,说明甲烷在电池阳极发生不同类型的反应.电流密度小时,甲烷发生部分氧化反应.电流密度大时,发生氢氧化和CO氧化,部分甲烷发生总反应为完全氧化的反应.部分甲烷发生完全氧化反应的同时,部分甲烷仍发生部分氧化反应,但其反应速率随电流密度增加逐渐降低.甲烷浓度和试验温度增加,甲烷开始发生完全氧化的电流密度增加.  相似文献   

5.
In recent years, fuel cell technology has attracted considerable attention from several fields of scientific research as fuel cells produce electric energy with high efficiency, emit little noise, and are non-polluting. Solid oxide fuel cells (SOFCs) are particularly important for stationary applications due to their high operating temperature (1,073–1,273 K). Methane appears to be a fuel of great interest for SOFC systems because it can be directly converted into hydrogen by direct internal reforming (DIR) within the SOFC anode. Unfortunately, internal steam reforming in SOFC leads to inhomogeneous temperature distributions which can result in mechanical failure of the cermet anode. Moreover this concept requires a large amount of steam in the fed gas. To avoid these problems, gradual internal reforming (GIR) can be used. GIR is based on local coupling between steam reforming and hydrogen oxidation. The steam required for the reforming reaction is obtained by the hydrogen oxidation. However, with GIR, Boudouard and cracking reactions can involve a risk of carbon formation. To cope with carbon formation a new cell configuration of SOFC electrolyte support was studied. This configuration combined a catalyst layer (0.1%Ir–CeO2) with a classical anode, allowing GIR without coking. In order to optimise the process a SOFC model has been developed, using the CFD-Ace+ software package, and including a thin electrolyte. The impact of a thin electrolyte on previous conclusions has been assessed. As predicted, electrochemical performances are higher and carbon formation is always avoided. However a sharp decrease in the electrochemical performances appears at high current densities due to steam clogging.  相似文献   

6.
质子传导陶瓷电解质燃料电池特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
谭小耀     孟波     杨乃涛     K.Li 《中国化学工程学报》2005,13(1):107-117
An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), free electron and electron hole are taken into consideration. The electrochemical process within the SOFC with hydrogen as the fuel is theoretically analyzed. With the present model, the effects of some parameters, such as the thickness of electrolyte, operating temperature and gas composition, on the ionic transport (or gas permeation) through the electrolyte and the electrical performance, i.e., the electromotive force (EMF) and internal resistance of the cell, are investigated in detail. The theoretical results are tested partly by comparing with the experimental data obtained from SrCe0.05M0.05O3-α(M=Yb, Y) cells.  相似文献   

7.
《Ceramics International》2023,49(4):5637-5645
Yttrium stabilized zirconia (YSZ) as a typical oxygen ionic conductor has been widely used as the electrolyte for solid oxide fuel cell (SOFC) at the temperature higher than 1000 °C, but its poor ionic conductivity at lower temperature (500–800 °C) limits SOFC commercialization. Compared with oxide ionic transport, protons conduction are more transportable at low temperatures due to lower activation energy, which delivered enormous potential in the low-temperature SOFC application. In order to increase the proton conductivity of YSZ-based electrolyte, we introduced semiconductor ZnO into YSZ electrolyte layer to construct heterointerface between semiconductor and ionic conductor. Study results revealed that the heterointerface between ZnO and YSZ provided a large number of oxygen vacancies. When the mass ratio of YSZ to ZnO was 5:5, the fuel cell achieved the best performance. The maximum power density (Pmax) of this fuel cell achieved 721 mW cm?2 at 550 °C, whereas the Pmax of the fuel cell with pure YSZ electrolyte was only 290 mW cm?2. Further investigation revealed that this composite electrolyte possessed poor O2? conductivity but good proton conductivity of 0.047 S cm?1 at 550 °C. The ionic conduction activation energy of 5YSZ-5ZnO composite in fuel cell atmosphere was only 0.62 eV. This work provides an alternative way to improve the ionic conductivity of YSZ-based electrolytes at low operating temperatures.  相似文献   

8.
Proton conducting solid oxide fuel cell (H-SOFC) is an emerging energy conversion device, with lower activation energy and higher energy utilization efficiency. However, the deficiency of highly active cathode materials still remains a major challenge for the development of H-SOFC. Therefore, in this work, K2NiF4-type cathode materials Pr2-xBaNi0.6Cu0.4O4+δ (x=0, 0.1, 0.2, 0.3), single-phase triple-conducting (e-/O2-/H+) oxides, are prepared for intermediate temperature H-SOFCs and exhibit good oxygen reduction reaction activity. The investigation demonstrates that doping Ba into Pr2-xBaNi0.6Cu0.4O4+δ can increase its electrochemical performance through enhancing electrical conductivity, oxygen vacancy concentration and proton conductivity. EIS tests are carried at 750℃ and the minimum polarization impedances are obtained when x=0.2, which are 0.068 Ω·cm2 in air and 1.336 Ω·cm2 in wet argon, respectively. The peak power density of the cell with Pr1.8Ba0.2Ni0.6Cu0.4O4+δ cathode is 298 mW·cm-2 at 750℃ in air with humidified hydrogen as fuel. Based on the above results, Ba-doped Pr2-xBaNi0.6Cu0.4O4+δ can be a good candidate material for SOFC cathode applications.  相似文献   

9.
SOFC内部重整反应与电化学反应耦合机理   总被引:1,自引:1,他引:0  
以经过预重整反应的混合气为原料的固体氧化物燃料电池(SOFC)内部,甲烷蒸气重整反应与电化学反应同时发生在阳极多孔介质中,二者受到不同的操作与设计参数的影响,对电池总体性能起着决定性作用。编制了三维数值模拟程序,对由多孔阳极层、气体流动管道、固体支撑平板构成的单个复合管道进行了研究。结果显示:重整反应主要发生在多孔材料靠近流动管道的薄层内,只有靠近管道入口处才能在较深处进行;电化学反应发生在多孔层与电解质的交界面处;重整反应生成的H2、CO扩散到多孔材料底部参加电化学反应;电化学反应生成的热量供重整反应使用。说明研究范围内,SOFC阳极复合通道具有较好的传热、传质性能,化学/电化学反应存在较好的耦合关系。  相似文献   

10.
A solid oxide fuel cell (SOFC) composite electrode exhibits a superior performance compared to a single phase electrode since the electrochemically active zone is spread into its volume. A functionally graded composite electrode consisting of monosized spherical electrocatalyst and electrolyte particles is sintered numerically by the discrete element method (DEM). The electrochemical performance is evaluated by a resistance network approach using Kirchhoff's current law. In the network discretization each contact between two particles is substituted by a bond resistance defined by contact size and the type of materials in contact.The graded electrode is optimized by varying its composition at the electrolyte/electrode interface and the degree to which the composition decreases linearly towards the current collector/electrode interface. Regarding its electrochemical activity, the graded electrode does not perform significantly better than an optimized uniformly randomly mixed composite electrode but percolation of the graded electrode is improved. In order to demonstrate the importance of percolation effects, a novel better performing electrode is developed which contains electronically conducting particle chains arranged within a random packing of ionically conducting particles.  相似文献   

11.
Low temperature solid oxide fuel cells (SOFCs) that efficiently utilize widely available hydrocarbon resources are highly desirable for cost reduction and durability purposes. In this work, SOFCs consisting of highly ionic conductive ceria-carbonate composite electrolytes and lithiated transition metal oxide symmetric electrodes are assembled and their electrochemical performances at reduced temperature (≤650 °C) are investigated using syngas fuel (44.65% H2, 10.19% CH4, 2.01% CO and the balanced CO2) derived from pyrolytic urban sludge. The cell gives a peak power output of 127 mW cm?2 at 600 °C and shows a relatively stable operation for 11 hours under constant voltage operational conditions. Though the composite electrode presents a moderately high polarization resistance toward CH4 and CO oxidation and the electrochemical performance is highly correlated with the microstructure of ceria-carbonate electrolyte, it is interesting to see that a higher concentration of methane is obtained after the fuel cell reaction, which may suggest an alternative approach to realize the power and chemical co-generation within such a SOFC reactor. Finally, the symmetric electrode shows high resistance toward carbon deposition, possibly due to its high alkaline nature.  相似文献   

12.
Solid oxide fuel cells (SOFCs) are high temperature energy conversion devices working efficiently and environmental friendly. SOFC requires a functional cathode with high electrocatalytic activity for the electrochemical reduction of oxygen. The electrode is often fabricated at high temperature to achieve good bonding between the electrode and electrolyte. The high temperature not only limits material choice but also results in coarse particles with low electrocatalytic activity. Nano-structured electrodes fabricated at low temperature by an infiltration/impregnation technique have shown many advantages including superior activity and wider range of material choices. The impregnation technique involves depositing nanoparticle catalysts into a pre-sintered electrode backbone. Two basic types of nano-structures are developed since the electrode is usually a composite consists of an electrolyte and an electrocatalyst. One is infiltrating electronically conducting nano-catalyst into a single phase ionic conducting backbone, while the other is infiltrating ionically conducting nanoparticles into a single phase electronically conducting backbone. In addition, nanoparticles of the electrocatalyst, electrolyte and other oxides have also been infiltrated into mixed conducting backbones. These nano-structured cathodes are reviewed here regarding the preparation methods, their electrochemical performance, and stability upon thermal cycling.  相似文献   

13.
Achieving high performance from a solid oxide fuel cell (SOFC) requires optimal design based on parametric analysis. In this paper, design parameters, including anode support porosity, thicknesses of electrolyte, anode support, and cathode functional layers of a single, intermediate temperature, anode‐supported planar SOFC, are analyzed. The response surface methodology (RSM) technique based on an artificial neural network (ANN) model is used. The effects of the cell parameters on its performance are calculated to determine the significant design factors and interaction effects. The obtained optimum parameters are adopted to manufacture the single units of an SOFC through tape casting and screen‐printing processes. The cell is tested and its electrochemical characteristics, which show a satisfactory performance, are discussed. The measured maximum power density (MPD) of the fabricated SOFC displays a promising performance of 1.39 W cm–2. The manufacturing process planned to fabricate the SOFC can be used for industrial production purposes.  相似文献   

14.
以氧化钇稳定的氧化锆(YSZ)作电解质、Ni-YSZ为阳极,研究中/低浓度干甲烷在固体氧化物燃料电池(SOFC)中阳极的反应。改变甲烷浓度,测量不同电流密度下,阳极出口气体产生速率,得到不同电流密度下的CH_4转化率(X_(CH_4))与CO选择性(S_(CO))。根据质量平衡以及产物生成速率与不同反应速率之间的关系,分析干甲烷在阳极平行发生的化学和电化学反应,得到X_(CH_4)和S_(CO)与阳极反应的关系。结果表明,低浓度千甲烷,在电流密度小时,发生部分氧化(POM)反应;电流密度大时,在发生POM反应的同时,发生全氧化(DOM)反应。中浓度干甲烷,发生POM反应。当发生DOM反应时,随电流密度的增加,CO选择性降低,甲烷转化率增加的幅度降低。发生POM反应时,两种浓度甲烷的电化学转化速率基本相同。  相似文献   

15.
The electrochemical performance of an anode material for a solid oxide fuel cell (SOFC) depends highly on microstructure in addition to composition. In this study, a NiO–yttria‐stabilised zirconia (NiO–YSZ) composite with a highly dispersed microstructure and large pore volume/surface area has been synthesised by ultrasonic spray pyrolysis (USP) and its electrochemical characteristics has been investigated. For comparison, the electrochemical performance of a conventional NiO–YSZ is also evaluated. The power density of the zirconia electrolyte‐supported SOFC with the synthesised anode is ∼392 mW cm–2 at 900 °C and that of the SOFC with the conventional NiO–YSZ anode is ∼315 mW cm–2. The improvement is ∼24%. This result demonstrates that the synthesised NiO–YSZ is a potential alternative anode material for SOFCs fabricated with a zirconia solid electrolyte.  相似文献   

16.
The dense electrolyte film with the rough surfaces for solid oxide fuel cell (SOFC) was fabricated on NiO/yttria‐stabilized zirconia (YSZ) anode substrate by using dual‐sized YSZ powders without additional effort to roughen electrolyte film. The dual‐sized YSZ powders consisted of the fine YSZ powder and the coarse YSZ powder at different weight ratios. Incorporation of the coarse YSZ powder into the fine YSZ powder is in order to increase the surface roughness of electrolyte film, and the surface roughness obviously increased with the increase of coarse YSZ powder. The rough surfaces resulted in an enlargement of the electrochemical active area. It was found that electrode polarization was reduced evidently and cell electrochemical performance was enhanced, as the surface roughness increased. However, the excessive coarse YSZ powder was not beneficial for densification of electrolyte film and thus the open‐circuit voltage (OCV) was declined. The cell with 17 wt.% coarse YSZ powder in the electrolyte exhibited the best performance and the maximum power density was 1,930 mW cm–2 at 800 °C.  相似文献   

17.
This paper presents a performance analysis of a planar SOFC (solid oxide fuel cell) with proton-conducting electrolyte (SOFC-H+). The SOFC-H+ is fueled by methane and operated under direct internal reforming and isothermal conditions. A one-dimensional steady-state model coupled with a detailed electrochemical model is employed to investigate the distribution of gas composition within fuel and air channels and all the electrochemical-related variables. The current–voltage characteristics of SOFC-H+ are analyzed and the result shows that the operation of SOFC-H+ at 0.7 V gives a good compromise on power density and fuel utilization. However, high CO content at fuel channel is observed at this condition and this may hinder the SOFC-H+ performance by reducing catalyst activity. The effect of key cell operating parameters, i.e., steam to carbon ratio, temperature, pressure, and water content in oxidant, on the performance of SOFC-H+ and the content of CO is also presented in this study.  相似文献   

18.
This paper reports impedance studies of a dual membrane fuel cell - an innovative design based on the idea for a junction between an oxygen ion conducting cathode/electrolyte part and proton conducting anode/electrolyte part through a mixed oxygen ion and proton conducting porous membrane. Thus oxygen, hydrogen and water are located in three independent chambers. This concept allows avoiding all the severe pitfalls connected to the presence of water at electrodes in both SOFC and PCFC. The performed measurements of the 3 compartments and the data analysis are improved by introducing some specialized approaches and techniques, which are discussed. The impedance contribution in the proof of the new concept is also presented.  相似文献   

19.
The electrochemical promotion of catalysis (or NEMCA effect) was studied for the CO oxidation and water gas shift reaction on a Pt anode in a polymer electrolyte membrane (PEM) fuel cell. It was found that this phenomenon plays a significant role in a normal fuel cell operation (fuel mixture – air) but not in a hydrogen pumping operation (fuel mixture – H2). This implies that the role of oxygen crossover in the electropromotion (EP) of CO oxidation is vital. During fuel cell operation, the increase in the rate of CO consumption is 2.5 times larger than the electrochemical rate, I/2F of CO oxidation, while for oxygen bleeding conditions (fuel mixture + O2−air) the increase is five times larger than I/2F. This shows that the catalytic properties of the Pt anode are significantly modified by varying the catalyst potential. In order to confirm the role of oxygen crossover, Nafion membranes (117, 1135) with different thickness, were studied. The results show that upon decreasing the membrane thickness the crossover is increased and thus the electrochemical promotion effect becomes more pronounced.  相似文献   

20.
A new proton conducting fuel cell design based on the BZCYYb electrolyte is studied in this research. In high‐performance YSZ‐based SOFCs, the Ni‐YSZ support plays a key role in providing required electrical properties and robust mechanical behavior. In this study, this well‐established Ni‐YSZ support is used to maintain the proton conducting fuel cell integrity. The cell is in a Ni‐YSZ (375 μm support)/Ni‐BZCYYb (20 μm anode functional layer)/BZCYYb (10 μm electrolyte)/LSCF‐BZCYYb (25 μm cathode) configuration. Maximum power density values of 166, 218, and 285 mW/cm2 have been obtained at 600°C, 650°C, and 700°C, respectively. AC impedance spectroscopy results show values of 2.17, 1.23, and 0.76 Ω·cm2 at these temperatures where the main resistance contributor above 600°C is ohmic resistance. Very fine NiO and YSZ powders were used to achieve a suitable sintering shrinkage which can enhance the electrolyte sintering. During cosintering of the support and BZCYYb electrolyte layers, the higher shrinkage of the support layer led to compressive stress in the electrolyte, thereby enhancing its densification. The promising results of the current study show that a new generation of proton conducting fuel cells based on the chemically and mechanically robust Ni‐YSZ support can be developed which can improve long‐term performance and reduce fabrication costs of proton conducting fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号