首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The effects of stirring speed, initial iridium ion concentration, hydrogen pressure, hydrochloric acid, chloride concentrations, seeding, and temperature on the reduction rate of iridium ion by hydrogen have been investigated. The whole process of reduction occurs in a complicated heterogeneous stage. The reduced metallic Ir serves itself as a catalyst for the reduction. The rate in the earlier stage of the reduction (including the nucleation period) is controlled by chemical reaction; the apparent activation energy obtained in the temperature range of 363 to 423 K was 76.1 kJ/mol. The order of the reaction with respect to the iridium ion concentration and the hydrogen partial pressure was found to be one, and the reaction rate increased with the increase of HC1 and Cl concentrations. The rate in the later stage was controlled by diffusion, and the apparent activation energy was reduced to 25.5 kJ/mol. The reaction mechanism has been given by the analysis of experimental results. Formerly Graduate Student, Department of Extractive Metallurgy, Institute of Precious Metals  相似文献   

2.
 The kinetics of isothermal reduction of the carbon bearing pellets, which were mainly composed of Bayanobo complex iron ore and pulverized coal, was investigated by thermogravimetry at the temperature of 1273-1673 K. The effects of xC/xO and the atmospheres on the extent of reduction also were investigated. The results indicate that the fractional reaction increased proportionally with temperature increasing and heating temperature is the significant influence factor to the reaction of carbon bearing pellets. The optimum xC/xO is 1. 2 and the effect of atmosphere on the reduction of iron oxides is almost negligible. The results can be interpreted that the reaction was initially controlled by a mixed controlled mechanism of carbon gasification and interface chemical reaction, and in the later stage, interface chemical reaction became the rate-controlling step. Apparent activation energy values of reduction at different levels of fractional reaction were calculated. Before F (fraction of reaction)=0. 5, the apparent activation energy ranges from 66. 39 to 75. 64 kJ/mol, while after F=0. 5, the apparent activation energy is 80. 98 to 85. 37 kJ/mol.  相似文献   

3.
The reaction between MgO and graphite powders under flowing argon atmosphere was studied using a dynamic thermogravimetric method. In the temperature range 293 to 1973 K, the effects of compacting pressure, magnesia/carbon ratio, heating rate, Ar carrier-gas flow rate, and CO-partial pressure were investigated. An experimentally determined reaction mechanism was proposed and discussed. The reduction process could be divided into two stages. The first stage includes the direct reaction between MgO and graphite particles and partial gas-solid reaction at relatively low temperature (below 1750 K). The overall reaction rate depends on the solid phase-boundary reaction between magnesia and carbon particles. The second stage is the gas-solid reaction between CO and MgO, which determines the overall reaction rate. The apparent activation energies of the two stages were estimated to be 208.29 and 374.13 kJ/mol, respectively.  相似文献   

4.
采用外包还原剂的方法对钛铁矿进行直接还原试验,研究了直接还原钛铁矿的动力学。结果表明,半焦粉直接还原钛铁矿分为两个阶段,第一阶段是升温阶段和恒温的初始阶段,受界面化学反应控制,表观活化能为113.14kJ/mol;第二阶段为恒温阶段,受固相中气体的内扩散控制,表观活化能为180.13kJ/mol。温度对还原度和还原速率的影响显著。随着温度的升高,还原度随之升高,反应速率加快;延长恒温时间也可以提高还原度,但恒温阶段反应速率增加缓慢  相似文献   

5.
The reduction rate of Mo oxide in slag by iron-carbon melt under different stirring conditions, reaction temperatures and slag composition has been investigated. Results indicate that the reduction of Mo oxide is a fast reaction; both stirring and temperature have evident influence upon the reaction; while the initial concentration of Mo oxide and content of fluoride in slag have also some influence upon the reaction. The reduction of Mo oxide is an apparent first order reaction. At 1440–1500°C, the reduction rate of Mo oxide is mainly controlled by Mo transfer in slag, with its diffusion activation energy of 223 kJ/mol. At 1500–1590°C, the transfer of Mo in metal turns to be the main limiting step, with its diffusion activation energy of 81.5 kJ/mol.  相似文献   

6.
Solid state reactive (SSR) sintering kinetics was observed for YAG ceramics. There were two densification stages in sin- tering process due to its reaction. After the first stage, samples began to expand, then, the second densification stage began. At a heat- ing rate of 10 ℃/min, the sample warped down and warped back to straight. The apparent activation energy of the first densification process was about 522 kJ/mol for the initial shrinkage of A1203 and Y203 mixed powder green-body, which increased in the follow- ing process due to the solid state reaction. In the second densification stage, synthesis reaction of YAG still worked. Green-bodies processed with higher heating rate got more shrinkage at the same temperature than lower heating rate green bodies. And its kinetic field diagram was abnormal, compared with that of other reported ceramics, such as Al203. It was found that the reaction of YAG provided positive effect to the sintering driving force. The apparent activation energy for densification of SSR YAG sintered in ArH5 atmosphere was 855 kJ/mol at temperature holding sintering. And the apparent activation energy for grain growth was 1053 kJ/mol.  相似文献   

7.
研究了含锌废渣及贫杂锌矿在碱浸过程中的动力学。结果表明,含锌废渣(ZnO)在碱溶液中的浸出过程符合关系式1-(1-η)13=kt,表观活化能为49.22 kJ/mol,说明浸出过程受化学控制;贫杂锌矿(ZnCO3)在碱溶液中的浸出过程可分为两段,在开始段时间内,1-(2/3)η-(1-η)2/3与浸出时间呈直线关系,活化能为19.95 kJ/mol;而在6 min以后则是1-(1-η)13与浸出时间呈直线关系,活化能为46.54 kJ/mol。说明在开始时间段内是受内扩散控制,而随后的浸出过程是受化学反应控制。  相似文献   

8.
Experiments were carried out by adding CaF2 and NaF as catalysts in an Ar atmosphere to study the isothermal reduction kinetics of vanadium titano-magnetite carbon composite pellets under high temperature in the range from 1 473 to 1 673 K. The scanning electron microscope (SEM) was used to characterize the microstructure of product. By analyzing reduction mechanism, it was found that the rate controlling step was gas diffusion, and the activation energy was 178.39 kJ/mol without adding any catalysts. Adding CaF2 or NaF of 3% to vanadium titano-magnetite carbon composite pellets can decrease the apparent activation energy of reduction, and the decrease extent was 14.95 and 15.79 kJ/mol, respectively. In addition, temperature was an important factor influencing on reaction rate.  相似文献   

9.
陈雯  王鑫  雷鹰  李雨  何思奇  廖振鸿 《钢铁》2020,55(9):11-15
 为了研究高磷铁矿石含碳球团等温还原动力学在温度为1 173、1 273、1 323、1 373、1 423和1 473 K时,采用界面化学反应模型、Jander方程、Ginstling-Broushtein方程、G Valensi-R E Carter方程等固-固/气反应机理函数对反应过程进行拟合,并采用XRD、SEM、EDX等对样品的物相组成、微观形貌和元素分布进行表征分析。研究结果表明,随着还原程度提高,反应速率由0迅速增至最大值,随后逐渐减小并趋于平缓;当温度为1 173~1 373 K时,反应过程符合界面化学反应,表观活化能为70.02 kJ/mol,线性相关系数为0.948 1;当温度为1 373~1 473 K时,反应过程符合Jander方程,限制步骤为铁离子固相扩散,表观活化能为215.36 kJ/mol,线性相关系数为0.991 2。  相似文献   

10.
Hongge vanadium titanomagnetite(HVTM)pellets were reduced by H_2-CO gas mixture for simulating the reduction processes of Midrex and HYL-III shaft furnaces.The influences of reduction temperature,ratio ofφ(H_2)toφ(CO),and pellet size on the reduction of HVTM pellets were evaluated in detail and the reduction reaction kinetics was investigated.The results show that both the reduction degree and reduction rate can be improved with increasing the reduction temperature and the H_2 content as well as decreasing the pellet size.The rational reduction parameters are reduction temperature of 1050°C,ratio ofφ(H_2)toφ(CO)of 2.5,and pellet diameter in the range of 8-11 mm.Under these conditions(pellet diameter of 11mm),final reduction degree of 95.51% is achieved.The X-ray diffraction(XRD)pattern shows that the main phases of final reduced pellets under these conditions(pellet diameter of 11 mm)are reduced iron and rutile.The peak intensity of reduced iron increases obviously with the increase in the reduction temperature.Besides,relatively high reduction temperature promotes the migration and coarsening of metallic iron particles and improves the distribution of vanadium and chromium in the reduced iron,which is conducive to subsequent melting separation.At the early stage,the reduction process is controlled by interfacial chemical reaction and the apparent activation energy is 60.78kJ/mol.The reduction process is controlled by both interfacial chemical reaction and internal diffusion at the final stage,and the apparent activation energy is 30.54kJ/mol.  相似文献   

11.
关键词:双相不锈钢; 流变曲线; 本构方程; 热加工图  相似文献   

12.
我国铜渣资源储量丰富,渣中含有多种有价金属,具有很高的二次利用价值.为了揭示铜渣提铁的碳热还原机理,以无烟煤为还原剂,进行铜渣含碳球团等温还原实验,并对其进行动力学分析.实验设定的还原温度为1 000 ℃、1 050 ℃、1 100 ℃、1 150 ℃和1 200 ℃,碳氧比即nc/no=1.0.结果表明,对于铜渣含碳球团等温还原实验,温度对反应速率有重要影响;该反应主要限速环节为气相扩散,活化能数值为118.059 kJ/mol;对其进行阶段性动力学分析,其活化能在61.54~146.98 kJ/mol范围内,且活化能的数值随着还原度的变化而变化,具体表现为:第1阶段反应活化能数值较小,原因可能是该阶段反应刚开始,原铜渣中含有一些铁氧化物(Fe3O4)先参与了反应;第2阶段反应活化能较高,此时原铜渣中的铁氧化物已基本反应,铁以橄榄石的状态存在,且橄榄石呈液态,致使球团孔隙度降低,气体在球团内的扩散受阻.   相似文献   

13.
A kinetic study of dissolution reaction of Al can was conducted for the synthesis of aluminum sec-butoxide (ASB). With the Al can scraps and sec-butyl alcohol (SBA) as reactants, the reaction was examined at the condition of 3 mol SBA/mol Al of stoichiometric ratio, adding 10− 3 mol HgI2/mol Al for catalyst and no agitation at the reaction temperature ranging from 80 to 100 °C. After the dissolution of 24 h at 100 oC, the reaction gave a 75% yield. A two-stage dissolution mechanism was proposed in which the dissolution rate is determined first by a chemical reaction and then by ash layer diffusion as the previous dissolution kinetics for the synthesis of AIP (Aluminum iso-propoxide) (Yoo, S.-J.,Yoon,H.-S., Jang, H.D., Lee,M.-J., Lee, S.-I.,Hong, S.-T., Park,H.S., 2007a. Dissolution kinetics of aluminum can in isopropyl alcohol for aluminum isopropoxide. Chem. Eng. J. 133, 79–84.). On the basis of the shrinking core model with the shape of flat plate, the first dissolution rate of Al can was controlled by chemical reaction. The concentration of SBA was largely changed during the dissolution reaction because it was added the stoichiometric ratio to the reactor. Therefore it was included as an integral term of the reaction time. By using the Arrhenius expression, the apparent activation energy of the first chemical reaction step was determined to be 200.5 kJ mol− 1. In the second stage, the dissolution rate is controlled by diffusion control through the ash layer. The apparent activation energy of the second step was determined to be 101.8 kJ mol− 1.  相似文献   

14.
为实现石煤与软锰矿焙烧样中钒锰的共提取,并解决石煤二段硫酸化焙烧过程中酸过量的问题,通过多因素研究探讨石煤与低品位软锰矿焙烧样耦合浸出工艺对钒锰共浸出率的影响,为石煤及低品位软锰矿焙烧样中钒锰资源高效综合利用提供了参考和依据。试验结果表明,当石煤与低品位软锰矿焙烧样的配矿比为1:1、矿浆液固比为5:1及浸出温度为80℃时,耦合浸出体系中钒的浸出率可达98.13%,而锰的浸出率可达99.45%。对耦合浸出体系的钒锰浸出动力学研究表明,钒浸出过程是通过固体产物层的内扩散控制,其表观活化能为22.401kJ/mol;锰浸出过程在低温区25~55℃下是通过化学反应控制,其表观活化能为57.232kJ/mol,高温区65~95℃下锰浸出过程是通过固体产物层的内扩散控制,其表观活化能为14.323kJ/mol。  相似文献   

15.
研究了利用微波配碳还原焙烧分解铁酸锌的工艺及机理。利用碳气化控制、化学控制及扩散控制模型研究了样品中铁酸锌分解的动力学行为,并考察了微波功率、反应温度、配碳比和粒度对铁酸锌分解率的影响。结果表明,样品的微波加热碳热还原试验的控制步骤为碳气化控制,活化能为39.21kJ/mol,在微波加热温度850℃、C/ZnFe2O4质量比为1∶4、粒径74~89μm、微波功率1.8kW、加热时间60min的条件下,铁酸锌的分解率达到90%。  相似文献   

16.
研究了微波加热条件下(500~800 ℃),AlCl3氯化钒渣中有价金属Fe、Mn、V和Cr变温动力学。通过X射线衍射和扫描电镜能谱表征了氯化产物随时间的物相演变和形貌变化,考察了AlCl3/钒渣的质量比和熔盐配比对氯化提取率的影响。结果表明,AlCl3/钒渣的质量比为1.5、(NaCl-KCl)/AlCl3熔盐质量比为1.66∶1时Fe、Mn、V和Cr的提取率最佳,分别为91.66%、92.96%、82.67%、75.82%和63.14%,微波加热30 min,5种元素的提取率达到或者超过常规加热方式6 h的氯化提取效果。通过热力学和动力学分析,橄榄石相优先于尖晶石相发生氯化反应。而且V和Cr的氯化反应速度小于Fe和Mn。Fe和Mn氯化过程为扩散控制,其非等温扩散活化能为17.02和17.10 kJ·mol?1, V和Cr在氯化过程中的限制性环节为界面化学反应,其表观活化能分别为40.00和50.92 kJ·mol?1;微波与熔盐耦合强化氯化反应的机理可以描述为扩散作用增强和局部化学反应增强。   相似文献   

17.
用TG-DSC热重同步热实验分析的方法,研究不同升温速率下,硅粉氮化机理及化学反应动力学.发现温度在1 000~1 300 ℃时:差示扫描量热曲线各出现一个吸热、一个放热峰,说明氮化机理已发生改变.在1 000~1 100 ℃温度范围内,氮化硅转化率显著增加,即温度是影响其转化率的主要因素.实验表明:氮化反应的限制性环节由反应开始阶段的界面化学反应控制和之后的界面化学反应与内扩散混合控制组成;通过动力学计算得到表观活化能E=404.5 kJ/mol,频率因子A=9.57×1015 m/s,反应级数n=0.95,最终得到反应的速率方程的数学表达式.   相似文献   

18.
为了循环利用高炉粉尘,研究了用宝山钢铁股份有限公司高炉粉尘与沥青焦粉混合后加入电弧炉造泡沫渣过程中FeO的还原动力学。结果表明,随粉尘加入量的增加和温度的升高,FeO的还原速率加快;用固体碳还原渣中FeO的反应为表观二级反应,其表观活化能为276kJ/mol;用固体碳还原渣中FeO的反应总速率由CO还原FeO的界面化学反应和炉渣的流动传质共同控制。  相似文献   

19.
采用自主研制的小型旋转床反应器,结合化学分析和X射线衍射分析等技术对CO还原澳大利亚PB粉进行了直接还原实验研究。结果表明:CO流量为200 mL/min,矿粉粒径范围为0.044~0.089 mm,还原时间为60 min,还原温度为1 000℃时,还原产物还原度和金属化率达到最大值,分别为92.70%和86.28%;在700~1 000℃内基于收缩未反应核模型对澳大利亚PB粉还原反应进行动力学分析,得出反应前期(t30 min)还原过程由气体内扩散和界面化学反应混合控制;反应后期(t30 min)还原反应的限制性环节为气体内扩散,指前因子A为0.006 72 s~(-1),表观活化能E为10.043 kJ/mol。  相似文献   

20.
在HSC6.0计算软件热力学分析的基础上,采用正交实验确定了高磷鲕状赤铁矿酸浸脱磷保铁的最佳工艺,并以最佳工艺为基础进行了酸浸过程中脱磷和铁损反应的动力学研究。热力学分析表明H_2SO_4为最佳酸浸用酸。正交实验得出最佳酸浸条件为:H+浓度为0.5mol/L的H_2SO_4溶液、酸浸时间40min、温度298K、液固比200mL∶14g、搅拌速度100r/min。在该条件下,脱磷率可达98.89%,铁损率仅为0.51%。通过SEM-EDS对酸浸前后高磷鮞状赤铁块矿试样分析表征得出:经H_2SO_4浸出后,磷灰石基本完全溶解,含铁矿相未发生明显反应。动力学分析显示:优化条件下,酸浸脱磷反应在298~328K内符合收缩未反应核模型,浸出过程主要受内扩散控制,表观活化能为11.24kJ/mol;铁损反应在298~328K内遵循收缩未反应核模型,浸出过程主要受化学反应控制,表观活化能为42.24kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号