首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The effect of step height on heat transfer to a radially outward expanded air flow stream in a concentric annular passage was studied experimentally. Separation, subsequent reattachment and developed air flow occurred in the test section at a constant heat flux boundary condition. The experimental investigation was focused on the effect of separation flow on the local and average convection heat transfer. The experimental set-up consists of concentric tubes to form annular passage with a sudden reduction in passage cross-section created by the variations of outer tube diameter at the annular entrance section (D). The outer tube of test section was made of aluminium having 83 mm inside diameter and 600 mm heated length, which was subjected to a constant wall heat flux boundary condition. The investigation was performed in a Re range of 17050-44545, heat flux varied from 719 W/m2 to 2098 W/m2 and the enhancement of step heights were, s = 0 (without step), 6 mm, 14.5 mm and 18.5 mm, which refer to d/D = 1, 1.16, 1.53 and 1.80, respectively.For all cases, an increase in the local heat transfer coefficient was obtained against enhanced heat flux and or Re. The effect of step variation is prominent in heat transfer at the separation region which increases with the rise of step height and it shows a little effect in the redevelopment region. In the separation region, the local heat transfer coefficient increases up to the maximum value at the reattachment point and then decreases gradually in the redevelopment region. The results have been correlated and compared with forced convection heat transfer in annular passage and show a maximum enhancement of 18% (Smax = 18.5 mm) within the range of step height. The present results show good agreement with previous works and have followed similar trends.  相似文献   

2.
An API X70 pipeline steel has been investigated with respect to hydrogen diffusion and fracture mechanics properties. A finite element cohesive element approach has been applied to simulate the onset of hydrogen-induced fracture. Base metal, weld simulated heat affected zone and weld metal have been investigated. The electrochemical permeation technique was used to study hydrogen diffusion properties, while in situ fracture mechanics testing was performed in order to establish the hydrogen influenced threshold stress intensity. The average effective diffusion coefficient at room temperature was 7.60 × 10−11 m2/s for the base metal, 4.01 × 10−11 m2/s for weld metal and 1.26 × 10−11 m2/s for the weld simulated heat affected zone. Hydrogen susceptibility was proved to be pronounced for the heat affected zone samples. Fracture toughness samples failed at a net section stress level of 0.65 times the yield strength; whereas the base metal samples did not fail at net section stresses lower than the ultimate tensile strength. The initial cohesive parameters which best fitted the experimental results were σc = 1500 MPa (3.1·σy) for the base metal, σc = 1800 MPa (3.0·σy) for weld metal and σc = 1840 MPa (2.3·σy) for heat affected zone. Threshold stress intensities KIc,HE were in the range 143–149 MPa√m.  相似文献   

3.
In this paper, the optimum positions of a pair heat source-sink in an enclosure have been studied. The objective of this investigation is to minimize the maximum temperature (Tmax) on the heat source with constant heat flux. For this, a Particle Swarm Optimization algorithm (PSOA) has been used. Continuity, momentum and energy equations with the Boussinesq approximation for a laminar and incompressible flow of a Newtonian fluid have been solved by finite volume method. The present study has been carried out for governing parameters like Rayleigh numbers (Ra) from 103 to 106, the cavity aspect ratio, A = H/L = 1 and the source and sink sizes D0 from 0.2 to 0.5. Numerical results revealed that the optimum configurations are a function of Rayleigh numbers and the source and sink sizes.  相似文献   

4.
Experiments were performed on natural convection heat transfer from circular pin fin heat sinks subject to the influence of its geometry, heat flux and orientation. The geometric dependence of heat dissipation from heat sinks of widely spaced solid and hollow/perforated circular pin fins with staggered combination, fitted into a heated base of fixed area is discussed. Over the tested range of Rayleigh number, 3.8 × 106 ≤ Ra ≤ 1.65 × 107, it was found that the solid pin fin heat sink performance for upward and sideward orientations shows a competitive nature, depending on Rayleigh number and generally shows higher heat transfer coefficients than those of the perforated/hollow pin fin ones in both arrangement. For all tested hollow/perforated pin fin heat sinks, however, the performance for sideward facing orientation was better than that for upward facing orientation. This argument is supported by observing that the augmentation factor was around 1.051.11, depending on the hollow pin diameter ratio, Di/Do. Meanwhile, the heat sink of larger hollow pin diameter ratio, Di/Do offered higher heat transfer coefficient than that of smaller Di/Do for upward orientation, and the situation was reversed for sideward orientation. The heat transfer performance for heat sinks with hollow/perforated pin fins was better than that of solid pins. The temperature difference between the base plate and surrounding air of these heat sinks was less than that of solid pin one and improved with increasing Di/Do.  相似文献   

5.
Present paper is performed to investigate the heat and exergy transfer characteristics of forced convection flow through a horizontal rectangular channel where open-cell metal foams of different pore densities such as 10, 20 and 30 PPI (per pore inches) were situated. All of the bounding walls of the channel are subjected to various uniform heat fluxes. The pressure drop and heat transfer characteristics are presented by two important parametric values, Nusselt number (NuH) and friction factor (f), as functions of Reynolds number (ReH) and the wall heat flux (q). The Reynolds number (ReH) based on the channel height of the rectangular channel is varied from 600 to 33?000, while the Grashof number (GrDh) ranged from approximately 105–107 depending on q. Based on the experimental data, new empirical correlations are constructed to link the NuH. The results of all cases are compared to that of the empty channel and the literature. It is found that the results are in good agreement with those cited in the references. The mean exergy transfer Nusselt number (Nue) based on the ReH, NuH, Pr and q for a rectangular channel with constant heat flux is presented and discussed.  相似文献   

6.
An experimental study has been conducted on the heat transfer of oscillating flow through a channel filled with aluminum foam subjected to a constant wall heat flux. The surface temperature distribution on the wall, velocity of flow through porous channel and pressure drop across the test section were measured. The characteristics of pressure drop, the effects of the dimensionless amplitude of displacement and dimensionless frequency of oscillating flow on heat transfer in porous channel were analyzed. The results revealed that the heat transfer in oscillating flow is significantly enhanced by employing porous media in a plate channel. The cycle-averaged local Nusselt number increases with both the kinetic Reynolds number Reω and the dimensionless amplitude of flow displacement A0. The length-averaged Nusselt number is effectively increased by increasing the kinetic Reynolds number from 178 to 874 for A0 = 3.1-4.1. Based on the experimental data, a correlation equation of the length-averaged Nusselt number with the dimensionless parameters of Reω and A0 is obtained for a porous channel with L/Dh = 3.  相似文献   

7.
Forced and free convective heat transfer for thermally developing and thermally fully developed laminar air flow inside horizontal concentric annuli in the thermal entrance length has been experimentally investigated. The experimental setup consists of a stainless steel annulus having a radius ratio of 2 and an inner tube with a heated length of 900 mm subjected to a constant wall heat flux boundary condition and an adiabatic outer annulus. The investigation covers Reynolds number range from 200 to 1000, the Grashof number was ranged from 6.2 × 105 to 1.2 × 107. The entrance sections used were long tube with length of 2520 mm (L/Dh = 63) and short tube with length of 504 mm (L/Dh = 12.6). The surface temperature distribution along the inner tube surface, and the local Nusselt number distribution versus dimensionless axial distance Zt were presented and discussed. It is inferred that the free convection effects tended to decrease the heat transfer at low Re number while to increase the heat transfer for high Re number. This investigation reveals that the Nusselt number values were considerably greater than the corresponding values for fully developed combined convection over a significant portion of the annulus. The average heat transfer results were correlated in terms of the relevant dimensionless variables with an empirical correlation. The local Nusselt number results were compared with available literature and show similar trend and satisfactory agreement.  相似文献   

8.
In the context of hydrogen production by microalgae, the growth of Chlamydomonas reinhardtii was characterized under autotrophic and mixotrophic conditions in a fully controlled photobioreactor (PBR). The combined effect of light transfer conditions, as represented by the illuminated fraction γ, with acetate consumption was observed upon establishment of anoxia. Anoxia was reached in batch cultures when γ was close to 1 (almost fully illuminated culture) in mixotrophic conditions while a value of γ ≈ 0.46 in autotrophic conditions was not sufficient. Based on these results, continuous hydrogen production was established in a cylindrical PBR operated in luminostat with constant illumination and in mixotrophic conditions. Maximum hydrogen gas production was equal to 1.4 ± 0.1 mlH2 l−1 h−1 for photon flux density of 110 μmol m−2 s−1 and reactor illuminated fraction of γ = 0.5. Carbon mass balance was realized, emphasizing the necessity to work in strictly autotrophic conditions for hydrogen production with no concomitant CO2 release.  相似文献   

9.
Two-phase pressure drop was measured across a micro-channel heat sink that served as an evaporator in a refrigeration cycle. The micro-channels were formed by machining 231 μm wide × 713 μm deep grooves into the surface of a copper block. Experiments were performed with refrigerant R134a that spanned the following conditions: inlet pressure of Pin = 1.44-6.60 bar, mass velocity of G = 127-654 kg/m2 s, inlet quality of xe,in = 0.001-0.25, outlet quality of xe,out = 0.49-superheat, and heat flux of q″ = 31.6-93.8 W/cm2. Predictions of the homogeneous equilibrium flow model and prior separated flow models and correlations yielded relatively poor predictions of pressure drop. A new correlation scheme is suggested that incorporates the effect of liquid viscosity and surface tension in the separated flow model’s two-phase pressure drop multiplier. This scheme shows excellent agreement with the R134a data as well as previous micro-channel water data. An important practical finding from this study is that the throttling valve in a refrigeration cycle offers significant stiffening to the system, suppressing the large pressure oscillations common to micro-channel heat sinks.  相似文献   

10.
Experiments were performed to study the effects of the height and thickness of square micro-pin-fin on boiling heat transfer from silicon chips immersed in a pool of degassed or gas-dissolved FC-72. Six kinds of micro-pin-fins with the dimensions of 30 × 60, 30 × 120, 30 × 200, 50 × 60, 50 × 200 and 50 × 270 μm2 (thickness, t × height, h) were fabricated on the surface of a square silicon chip with the dimensions of 10 × 10 × 0.5 mm3 by using the dry etching technique. The fin pitch was twice the fin thickness. The experiments were conducted at the liquid subcooling, ΔTsub, of 0, 3, 25 and 45 K under the atmospheric condition. The results were compared with previous results for a smooth chip and three chips with enhanced heat transfer surfaces. The micro-pin-finned chips showed a considerable heat transfer enhancement in the nucleate boiling region and increase in the critical heat flux, qCHF, as compared to the smooth chip. The wall temperature at the CHF point was always less than the maximum allowable temperature for LSI chips (=85 °C). For a fixed value of t, qCHF increased monotonically with increasing h. The increase was more significant for larger t. The qCHF increased almost linearly with increasing ΔTsub. The maximum value of allowable heat flux (=84.5 W/cm2), 4.2 times as large as that for the smooth chip, was obtained by the chip with h=270 μm and t=50 μm at ΔTsub=45 K.  相似文献   

11.
Convective boiling heat transfer coefficients and dryout phenomena of CO2 are investigated in rectangular microchannels whose hydraulic diameters range from 1.08 to 1.54 mm. The tests are conducted by varying the mass flux of CO2 from 200 to 400 kg/m2 s, heat flux from 10 to 20 kW/m2, while maintaining saturation temperature at 0, 5 and 10 °C. Test results show that the average heat transfer coefficient of CO2 is 53% higher than that of R134a. The effects of heat flux on the heat transfer coefficient are much significant than those of mass flux. As the mass flux increases, dryout becomes more pronounced. As the hydraulic diameter decreases from 1.54 to 1.27 mm and from 1.27 to 1.08 mm at a heat flux of 15 kW/m2 and a mass flux of 300 kg/m2 s, the heat transfer coefficients increase by 5% and 31%, respectively. Based on the comparison of the data from the existing models with the present data, the Cooper model and the Gorenflo model yield relatively good predictions of the measured data with mean deviations between predicted and measured data of 21.7% and 21.2%, respectively.  相似文献   

12.
An experimental study was carried out to investigate the shape and the heat transfer characteristics of an array of three laminar pre-mixed butane/air slot flame jets impinging upwards normally on a horizontal water-cooled flat plate. The effects of jet-to-jet spacing and nozzle-to-plate distance were examined at the Reynolds number (Re) of 1000 and the equivalence ratio (?) of unity. Comparisons of the heat transfer characteristics between single and multiple slot flame jets, as well as multiple slot and round jets, were made. The between-jet interference decreased with increasing jet-to-jet spacing (s/de) and nozzle-to-plate distance (H/de). Strong interference was obtained at s/de = 1 and H/de = 2, at which the central jet was suppressed while the side jets were deflected towards their free sides. In addition, there was no minimum heat flux found in the inter-jet interacting zone, instead, a peak heat flux was obtained. Thermal performance was reduced when H/de became smaller than the length of the conical luminous reaction zone of the flame. A maximum average heat flux occurred at the moderate jet-to-jet spacing of s/de = 2.5 at Re = 1000, ? = 1 and H/de = 2. The resultant heat flux distribution of the central jet of a multiple slot jets system was higher than that of a single slot jet when the jet-to-jet spacing was small, but this advantage in thermal performance diminished when the jet-to-jet spacing was increased. Besides, the area-averaged heat flux of the multiple slot flame jets was higher than that of the multiple round flame jets arranged at the same geometric configuration.  相似文献   

13.
An experimental study was done for hydrodynamically fully developed and thermally developing laminar air flows in a horizontal circular tube has a 30 mm inside diameter and 900 mm heated length (L/D = 30) under a constant wall heat flux boundary condition, with different aluminum entrance section pipes (calming sections) having the same inside diameter as test section pipe but with variable lengths of 600 mm (L/D = 20), 1200 mm (L/D = 40), 1800 mm (L/D = 60), and 2400 mm (L/D = 80). The Reynolds number ranged from 400 to 1600 and the heat flux is varied from 60 W m− 2 to 400 W m− 2. This paper examines the effects of the entrance sections lengths and heating on the free and forced convection heat transfer process. The surface temperature data were measured and heat transfer rates at different heat flux levels as well as different Reynolds numbers were calculated and correlated in the form of relevant parameters. The buoyancy force has a significant effect on the heat transfer and the combined convection factor was approximately varied form 0.13 ≤ Gr/Re2 ≤ 7.125. It was found that the surface temperature increases as the entrance section length increases. It was inferred that the heat transfer decreases as the entrance section length increases due to the flow resistance and the mass flow rate. The proposed correlation was compared with available literature and with laminar forced convection and showed satisfactory agreement.  相似文献   

14.
This paper is the second of a two-part study concerning two-phase flow and heat transfer characteristics of R134a in a micro-channel heat sink incorporated as an evaporator in a refrigeration cycle. Boiling heat transfer coefficients were measured by controlling heat flux (q″ = 15.9 − 93.8 W/cm2) and vapor quality (xe = 0.26 − 0.87) over a broad range of mass velocity. While prior studies point to either nucleate boiling or annular film evaporation (convective flow boiling) as dominant heat transfer mechanisms in small channels, the present study shows heat transfer is associated with different mechanisms for low, medium and high qualities. Nucleate boiling occurs only at low qualities (xe < 0.05) corresponding to very low heat fluxes, and high fluxes produce medium quality (0.05 < xe < 0.55) or high quality (xe > 0.55) flows dominated by annular film evaporation. Because of the large differences in heat transfer mechanism between the three quality regions, better predictions are possible by dividing the quality range into smaller ranges corresponding to these flow transitions. A new heat transfer coefficient correlation is recommended which shows excellent predictions for both R134a and water.  相似文献   

15.
In this paper, 3-D numerical analysis of the porous disc line receiver for solar parabolic trough collector is presented. The influence of thermic fluid properties, receiver design and solar radiation concentration on overall heat collection is investigated. The analysis is carried out based on renormalization-group (RNG) kε turbulent model by using Therminol-VP1 as working fluid. The thermal analysis of the receiver is carried out for various geometrical parameters such as angle (θ), orientation, height of the disc (H) and distance between the discs (w) and for different heat flux conditions. The receiver showed better heat transfer characteristics; the top porous disc configuration having w = di, H = 0.5di and θ = 30°. The heat transfer characteristic enhances about 64.3% in terms of Nusselt number with a pressure drop of 457 Pa against the tubular receiver. The use of porous medium in tubular solar receiver enhances the system performance significantly.  相似文献   

16.
A. El Fadar  A. Mimet 《Solar Energy》2009,83(6):850-861
This article suggests a numerical study of a continuous adsorption refrigeration system consisting of two adsorbent beds and powered by parabolic trough solar collector (PTC). Activated carbon as adsorbent and ammonia as refrigerant are selected. A predictive model accounting for heat balance in the solar collector components and instantaneous heat and mass transfer in adsorbent bed is presented. The validity of the theoretical model has been tested by comparison with experimental data of the temperature evolution within the adsorber during isosteric heating phase. A good agreement is obtained. The system performance is assessed in terms of specific cooling power (SCP), refrigeration cycle COP (COPcycle) and solar coefficient of performance (COPs), which were evaluated by a cycle simulation computer program. The temperature, pressure and adsorbed mass profiles in the two adsorbers have been shown. The influences of some important operating and design parameters on the system performance have been analyzed.The study has put in evidence the ability of such a system to achieve a promising performance and to overcome the intermittence of the adsorption refrigeration systems driven by solar energy. Under the climatic conditions of daily solar radiation being about 14 MJ per 0.8 m2 (17.5 MJ/m2) and operating conditions of evaporating temperature, Tev = 0 °C, condensing temperature, Tcon = 30 °C and heat source temperature of 100 °C, the results indicate that the system could achieve a SCP of the order of 104 W/kg, a refrigeration cycle COP of 0.43, and it could produce a daily useful cooling of 2515 kJ per 0.8 m2 of collector area, while its gross solar COP could reach 0.18.  相似文献   

17.
We have characterized a ternary mixture of N-methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) + 0.5 M LiTFSI + y poly(ethylene glycol) dimethyl ether (PEGDME) (y = kg PEGDME/kg PYR14TFSI) as an electrolyte in Li metal/S cells. The presence of PYR14TFSI in the mixture resulted in a significant improvement of the thermal stability and the ionic conductivity (σ) of the mixture with increasing PEGDME contents (for example, σ = 4.2 × 10−3 S cm−1 at 29 °C for y = 2.0). These improvements are most significant at low temperatures, which is probably due to a lowering of the viscosity of the mixture with higher amounts of PEGDME. It is found that the mixture has good compatibility with respect to Li metal as demonstrated by time-dependent interfacial impedance and galvanostatic Li stripping/deposition measurements. We found that a Li/S cell with PYR14TFSI + 0.5 M LiTFSI + y PEGDME (y = 2.0) can deliver about 1300 mAh g−1-sulfur at 0.054 mA cm−2 at ambient temperature at the first cycle. A better charge/discharge cyclability of the Li/S cell in PYR14TFSI + 0.5 M LiTFSI + y PEGDME was found at higher PEGDME contents, and a Li/S cell with the mixture having y = 2.0 exhibited a capacity fading rate of 0.42% per cycle over 100 cycles at 0.054 mA cm−2 at 40 °C. Consequently the PYR14TFSI + LiTFSI + PEGDME mixture is a promising electrolyte for Li/S cells.  相似文献   

18.
In this paper, convective heat transfer effect on the non-Newtonian nanofluid flow in the horizontal tube with constant heat flux was investigated using computational fluid dynamics (CFD). For this purpose, non-Newtonian nanofluid containing Al2O3 and Xanthan aqueous solution as a liquid single phase with two average particle sizes of 45 and 150 nm and four particle concentrations of 1, 2, 4 and 6 wt.% and two concentrations of Xanthan aqueous solutions (0.6,1.0 wt.%) were used. Effect of particle size and concentration of Xanthan solution on convective heat transfer coefficient was investigated in different Reynolds numbers (500 < Re < 2500) for various axial locations of tube. The results showed that heat transfer coefficient and Nu number of non-Newtonian nanofluid increased with increasing concentration of Xanthan solution. By applying the modeling results, an equation was obtained for Nusselt number prediction using the dimensionless numbers. The results showed that the correlated data were in very good agreement with predicted data. The maximum error was around 5%.  相似文献   

19.
Ni–Cr–Al metallic foam absorber with high porosity was catalytically activated using a Ru/γ-Al2O3 catalyst, and was subsequently tested with respect to CO2 reforming of methane in a small-scale volumetric receiver-reactor by using a sun-simulator. A chemical storage efficiency of 37% was obtained for a mean light flux of 325 kW m−2. Furthermore, the activity and the stability of the metallic foam absorber were compared with those of a SiC foam absorber activated with the same Ru/γ-Al2O3 catalyst for 50 h of light irradiation, and it was found that the metallic foam absorber has superior catalytic stability in comparison to the SiC form absorber. In addition, unlike ceramic foams such as SiC, metallic foams feature superior plasticity, which prevents the emergence of cracks caused by mechanical or thermal shock.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号