首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ENEA photon dosemeter, introduced in 1995, consisting of two differently filtrated LiF(Mg,Cu,P) detectors, has been modified recently. The ABS (acrylonitrile butadiene styrene) plastic support has been replaced by a new aluminium card supporting the same two detectors (LiF(Mg,Cu,P) GR200). The new card, fully developed at the ENEA-Radiation Protection Institute (which is going to be patented), can now be processed through a Harshaw Model 6600 Automated TLD Reader, a hot gas reader. This paper reports the results of the individual calibration of approximately 60,000 LiF(Mg,Cu,P) GR200 detectors inserted on the new aluminium cards. Before the implementation in routine of the new cards, the reader has been characterised. Steps and tests to be made to use the card in routine (i.e. reader stability, linearity, reproducibility, etc.) are reported. The whole dosimetric system now combines the very good performances of the Harshaw Model 6600 reader and that of LiF(Mg,Cu,P) thermoluminescent material.  相似文献   

2.
A new configuration for a thermoluminescent dosimetric card has been developed through collaboration between the Institute of Nuclear Physics in Kraków and several commercial dosimetric companies. The card is based on high-sensitivity LiF:Mg,Cu,P circular pellets (MCP-N) welded inside synthetic foils. The basic configuration consists of two pellets of 3.6 mm diameter and thicknesses from 0.25 up to 0.38 mm. The cards can be processed in a standard 6600 or 8800 Harshaw automatic TLD reader. The dosemeters demonstrate very high sensitivity, low background and good stability. This article presents results of the performance tests of the new dosimetric cards in the automatic TLD readers and a comparison of their properties.  相似文献   

3.
The Harshaw TLD system has three key calibration procedures: the Reader, the Dosemeter and the Algorithm. These functions must be properly calibrated for the system to achieve the optimum results. For the conventional reader and dosemeter calibration, Harshaw TLD recommends a pre-fade and a post-fade of 24-48 h when calibrating the system for LiF:Mg,Ti type dosemeter. It is also recommended that keeping the fade time consistent is important to maintain the quality of the system performance. In recent years, new calibration features have been introduced into the Harshaw TLD models 6600 and 8800 operating systems. These new features are Auto Calibration, Auto QC and Auto Blank, and they give the user the ability to set up the clear-expose-read process to be performed automatically in a sequence for each dosemeter. This saves processing time and keeps the fade time the same. However, since the fade time is near zero, will it affect the TLD system calibration factors? What should the user expect? This paper presents a study of the effect of Auto Calibration/Auto QC to the TLD operation.  相似文献   

4.
The pre-irradiation and post-irradiation fading of a commercially available LiF:Mg,Cu,P thermoluminescent detector (TLD)-the Harshaw 8841 TLD-have been assessed. The Harshaw 8841 TLD comprises three TLD-700H chips (99.7% 7LiF and 0.03% 6LiF by weight) and one TLD-600H chip (4.4% 7LiF and 95.6% 6LiF by weight). Pre-irradiation and post-irradiation fading were measured for storage times up to 164 d and three different storage temperatures (-8, 25 and 50 degrees C). Dosemeters were irradiated in a mixed photon-neutron field so that the fading behaviour of the photon and neutron signals could be studied. The TLD-700H and TLD-600H chips exhibited complex changes in sensitivity and signal that depended on storage time, storage temperature and the type of radiation to which the chips had been exposed. However, the magnitudes of these changes in sensitivity and signal were relatively small. TLD-600H and TLD-700H, therefore, exhibit good stability of sensitivity and signal.  相似文献   

5.
The response of thermoluminescence dosemeters (TLDs) to light, in various conditions, has been studied. TLD cards containing both conventional lithium fluoride (LiF:Mg,Ti) and the high-sensitivity material LiF:Mg,Cu,P were available, so permitting a comparison between the two types. Also available for the tests were Harshaw(TM) extremity EXT-RAD (LiF:Mg,Cu,P) dosemeters. The LiF:Mg,Ti body TLD cards and the EXT-RAD extremity dosemeters both showed some response to fluorescent light, while the LiF:Mg,Cu,P cards showed no significant response. It is therefore concluded that LiF:Mg,Cu,P body cards need no special precautions to protect them from the effects of light. For LiF:Mg,Ti cards and extremity dosemeters, effects are small, but steps to avoid excessive light exposure should be considered.  相似文献   

6.
The results of an intercomparison exercise within the US Navy dosimetric network (USN-DN) are presented and discussed. The USN-DN uses a commercially available LiF:Mg,Cu,P thermoluminescent dosemeter (TLD) model Harshaw 8840/8841 and TLD reader model Harshaw 8800 manufactured by Thermo Fisher Scientific. The USN-DN consists of a single calibration facility and 16 satellite dosimetry reading facilities throughout the world with ~ 40 model 8800 TLD readers and in excess of 350 000 TLD cards in circulation. The Naval Dosimetry Center (NDC) is the primary calibration site responsible for the distribution and calibration of all TLD cards and their associated holders. In turn, each satellite facility is assigned a subpopulation of cards, which are utilised for servicing their local customers. Consistency of the NDC calibration of 150 dosemeters (calibrated at NDC) and 27 locally calibrated remote readers was evaluated in the framework of this intercomparison. Accuracy of TLDs' calibration, performed at the NDC, was found to be <3 % throughout the entire network. Accuracy of the readers' calibration, performed with the NDC issued calibration dosemeters at remote sites, was found to be better than 4 % for most readers. The worst performance was found for reader Channel 3, which is calibrated using the thinnest chip of the Harshaw 8840/8841 dosemeter. The loss of sensitivity of this chip may be caused by time-temperature profile that has been designed for all four chips without consideration of chip thickness.  相似文献   

7.
A new type of extremity dosemeter, which incorporates the Harshaw TLD EXTRAD dosemeter element into a PVC finger stall, has been developed. The dosemeter uses high-sensitivity lithium fluoride, (7)LiF:Mg,Cu,P (TLD-700H) in a thin 7 mg cm(-2) layer, with alternative coverings of PVC at 10 mg cm(-2) and aluminised polyester at 3.2 mg cm(-2). Results are presented of the type testing of both versions of the finger stall dosemeter against published standards.  相似文献   

8.
The characteristics of thermoluminescence dosemeters (TLDs) regarding the determination of photon and neutron absorbed doses were investigated in a thermal neutron beam. Harshaw TLD-100 (LiF:Mg,Ti) and TLD-700 (7LiF:Mg,Ti) were compared with similar materials from Solid Dosimetric Detector and Method Laboratory (People's Republic of China). Harshaw TLD-700H (7LiF:Mg,Cu,P) and aluminium oxide (Al2O3:Mg,Y) from Hungary were also considered for photon dose measurement. The neutron sensitivity of the investigated materials was measured and found to be consistent with values reported by other authors. A comparison was made between the TL dose measurements and results obtained via conventional methods. An agreement within 20% was obtained, which demonstrates the ability of TLD for measuring neutron and photon doses in a mixed field, using careful calibration procedures and determining the neutron sensitivity for the usage conditions.  相似文献   

9.
10.
One of the advantages of LiF based thermoluminescent (TL) materials is its tissue-equivalent property. The Harshaw TLD-100H (LiF:Mg,Cu,P) material has demonstrated that it has a near-flat photon energy response and high sensitivity. With the optimized dosemeter filters built into the holder, the Harshaw TLD-100H two-element dosemeter can be used as a whole body personnel dosemeter for gamma, X ray and beta monitoring without the use of an algorithm or correction factor. This paper presents the dose performance of the Harshaw TLD-100H two-element dosemeter against the ANSI N13.11-2001 standard and the results of tests that are required in IEC 1066 International Standard.  相似文献   

11.
It is well known that spurious signals can occur in thermoluminescence dosimetry (TLD) whenever contaminants (i.e. dirt, oil, dust) are present on the surface of the TLD card or crystal during the read-out process. For TLD cards, the Teflon material can also contribute to the background noise and this contribution has been found to depend on the material's light absorption. These non-radiation-induced signals contribute to the total light output during TLD read-out and can lead to incorrect dosimetry especially for low-dose measurements such as personal dosimetry. However, these spurious signals are generally in the low-temperature channels and are mostly accompanied by abnormal glow curves. Most of the published reports dealing with this type of spurious TL signal are on the LiF:Mg,Ti (TLD-100) material. The relatively new TLD material, LiF:Mg,Cu,P, is more sensitive and has higher signal-to-noise ratio than the traditional LiF:Mg,Ti. In this study, the effects of disturbing signals to the LiF:Mg,Cu,P (TLD-100H) cards used in personal dosimetry are investigated and compared with those of LiF:Mg,Ti (TLD-100).  相似文献   

12.
Participation of the University of Costa Rica (UCR) in activities in an IAEA Regional Project RLA/9/066 through training, equipment and expert missions, has enabled to setting up of a national personal monitoring laboratory. Since 2007, the UCR has been in charge of monitoring around 1800 medical radiation workers of the Social Security System. Individual external doses are measured with thermoluminescent dosemeter using a Harshaw 6600 Plus reader. The service has accreditation with ISO/IEC 17025:2005. Distribution of monitored medical personnel is as follows: 83 % in diagnostic radiology, 6 % in nuclear medicine and 6 % in radiotherapy. Preliminary values for the 75 percentile of annual H(p)(10) in mSv are: radiology 0.37; interventional radiology 0.41; radiotherapy 0.53 and nuclear medicine 1.55. The service provided by the UCR in a steady and reliable way can help to implement actions to limit the doses received by the medical workers and optimise their radiation protection programs.  相似文献   

13.
Harshaw TLD-700H (7LiF:Mg,Cu,P) was previously characterised for low- to high-dose ranges from 1 microGy to 20 Gy. This paper describes the studies and results of dose-response and linearity at much higher doses. TLD-700H is a near perfect dosimetric material with near tissue equivalence, flat energy response, and the ability to measure beta, gamma and X rays. These new results extend the applicability of Harshaw TLD-700H into more dosimetric measurement environments. The simple glow curve structure provides insignificant fade, eliminating special oven preparation methods experienced by other materials. The work presented in this paper quantifies the performance of Harshaw TLD-700H in extended ranges.  相似文献   

14.
Evaluation of a new extremity dosemeter is presented. The dosemeter is a passive device that is easy to wear and features a permanent individual numerical ID with barcode, a watertight case, an automatic TLD reader and database management software. Two dosemeters were studied: the first consists of a 100 mg x cm(-2) 7LiF:Mg,Ti (TLD-700) chip and a 42 mg x cm(-2) cap, the other consists of a 7 mg x cm(-2) layer of 7LiF:Mg,Cu,P (TLD-700H) powder and a 5 mg x cm(-2) cap. Sensitivity, repeatability, lower limit detection, angular responses and energy responses for these dosemeters are studied and presented. The dose calculation algorithm is developed and its dosimetric performance accuracy is compared with the standard ANSI N13.32-1995, Performance Testing of Extremity Dosemeters.  相似文献   

15.
In this study, the temperature-induced variations in the TLD-100 response and the modifications in its glow peaks are investigated in real environmental exposure conditions in Riyadh, Saudi Arabia, where ambient temperatures during summer reach >45 degrees C and with relative humidity of <10%. Three groups of 12 TLD-100 cards in Harshaw type 8814 TLD cardholders were deployed as environmental dosemeters for a period of approximately 1 month for 12 consecutive months. One group was irradiated to 5 mGy 137Cs prior to deployment; another was irradiated to the same dose after deployment, while the last group was left unirradiated. Analysis of glow curves was done using commercially available glow curve deconvolution software (CGCD). Monthly variations in peak 3, 4 and 5 areas relative to the corresponding peak areas of a prompt glow curve are presented. Results of this study show good TL signal compensation between peaks 4 and 5 at all ambient temperatures encountered in this experiment, despite the observed individual variations experienced by each of these peaks. The sum of peak 4 and 5 areas is constant to within approximately 10%, for both pre- and post-irradiated dosemeters, during this 12-month cycle.  相似文献   

16.
A batch of LiF thermoluminescence dosemeters (TLDs), each containing five TLD-600 and TLD-700 thermoluminescence dosemeter chips, was irradiated with 59.85 MeV per nucleon 86Kr20+ ions from the K1200 superconducting cyclotron at the National Superconducting Cyclotron Laboratory (NSCL). Michigan State University, USA. The average linear energy transfer of the accelerated 86Kr ions and the resulting dose imparted to the TLD chips were calculated to be 3343 keV.microm(-1) per ion and 1.68 Gy respectively. A similar batch of TLD chips was irradiated with 1.3 MeV gamma rays from a 60Co source to 1.0 Gy. The TLD chips were evaluated at a ramp heating rate of 10 degrees C.s(-1) to 400 degrees C using a hot-finger type TLD reader. The thermoluminescence efficiency of the TLD-600 and TLD-700 dosemeters, relative to 60Co gamma rays was calculated to be 0.0025 and 0.0027 respectively  相似文献   

17.
The UK Health Protection Agency is currently commissioning a new personal dosimetry system based on the use of Harshaw two-element thermoluminescent dosemeter cards using LiF:Mg,Cu,P. Results of extensive type testing carried out with reference to IEC 61066, "Thermoluminescence Dosimetry Systems for Personal and Environmental Monitoring", have been presented.  相似文献   

18.
A thermoluminescence dosimetry (TLD) system was characterised at SSDL-ININ to verify the air-kerma strength (S(K)) and dose-to-water (D(W)) values for (137)Cs sources used in low dose rate (LDR) brachytherapy treatments at the Hospital General de Mexico (HGM). It consists of a Harshaw 3500 reader and a set of TLD-100 powder capsules. The samples of TLD-100 powder were calibrated in terms of D(W) vs. nC or nC mg(-1), and their dose response curves were corrected for supralinearity. The D(W) was calculated using the AAPM TG-43 formalism using S(K) for a CDCSM4 (137)Cs reference source. The S(K) value was obtained by using a NE 2611 chamber, and with two well chambers. The angular anisotropy factor was measured with the NE 2611 chamber for this source. The HGM irradiated TLD-100 powder capsules to a reference dose D(W) of 2 Gy with their (137)Cs sources. The percent deviations between the imparted and reference doses were 1.2% < or = Delta < or = 6.5%, which are consistent with the combined uncertainties: 5.6% < or = u(c) < or = 9.8% for D(W).  相似文献   

19.
An improvement in the clinical results obtained using total body irradiation (TBI) with photon beams requires precise TBI treatment planning, reproducible irradiation, precise in vivo dosimetry, accurate documentation and careful evaluation. In vivo dosimetry using LiF Harshaw TLD-100 chips was used during the TBI treatments performed in our department. The results of in vivo thermoluminescence dosimetry (TLD) show that using TLD measurements and interactive adjustment of some treatment parameters based on these measurements, like monitor unit calculations, lung shielding thickness and patient positioning, it is possible to achieve high precision in absorbed dose delivery (less than 0.5%) as well as in homogeneity of irradiation (less than 6%).  相似文献   

20.
The personal dosimetry service of the UK Health Protection Agency-formerly of the National Radiological Protection Board (NRPB)-is currently commissioning a body thermoluminescence dosemeter (TLD) system based on the use of Harshaw(TM) 8800 readers and two-element cards. As part of the process, studies have been carried out into the long-term time dependence of response, the limit of detection and the magnitude of the signal remaining after recommended processing. TLD cards containing both conventional lithium fluoride (LiF:Mg,Ti) and the high-sensitivity material LiF:Mg,Cu,P were available, thus allowing a comparison between the two types of material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号