首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction of the propagation loss of an antiresonant reflecting optical waveguide (ARROW) to 0.3 dB/cm in a short-wavelength band by using transparent TiO2/SiO2 interference cladding is discussed. An analysis method for ARROW is developed to analyze its propagation characteristics. Two uncoupled parallel ARROWs were stacked with 2-μm spacing, to obtain three-dimensional optical interconnection  相似文献   

2.
A low-loss polyimide-Ta2O5-SiO2 hybrid antiresonant reflecting optical waveguide (ARROW) is presented. The ARROW device was fabricated using both the organic and dielectric thin-film technologies. It consists of the fluorinated polyimide, tantalum pentoxide (Ta2O5), and silicon dioxide (SiO2) hybrid layers deposited on a Si substrate. For transverse electric polarized light, the propagation loss of the waveguide as low as 0.4 dB/cm was obtained at 1.31 μm. The propagation loss for transverse magnetic polarized light is 1.5 dB/cm. An ARROW waveguide fabricated using the polyimide-Ta2O5 -polyimide material system is also presented for comparison  相似文献   

3.
A novel ARROW (antiresonant reflecting optical waveguide)-based optical wavelength filter is proposed. The modal characteristics of the coupled ARROW structures is analyzed rigorously by the transverse resonance method. As an alternative configuration to the conventional directional coupler filter, the proposed device features large core size compatible with fiber and nearly periodic dependence of the coupling-length on the waveguide separation, which provides more flexibility for fabrication of the device. A design procedure for this type of coupled ARROW structure used for wavelength filtering is presented. The devices designed are simulated and verified by the beam propagation method. An ARROW wavelength filter based on SiO2/TiO2 has a FWHM bandwidth narrower than 7 Å  相似文献   

4.
A novel antiresonant reflecting optical waveguide (ARROW) fabricated using both the organic and dielectric thin film technologies is presented for the first time. The ARROW consisted of the fluorinated polyimide and tantalum pentoxide (Ta2O5) hybrid layers deposited on a Si substrate. For TE polarized light, the propagation loss of the waveguide as low as 0.8 dB/cm is obtained at 632.8 nm. The propagation loss for TM polarized light is 2.7 dB/cm. Some design considerations of the hybrid ARROW are also discussed in this work  相似文献   

5.
We designed a single-pass quasi-phase-matched second-harmonic generation (SHG) device with a planar waveguide; the device comprised a Y-cut 5 mol% MgO-doped LiNbO3 (MgO:LiNbO3)crystal core that was 3 mum thick and SiO2 cladding. The waveguide provided a high coupling efficiency of 95% between an incident Gaussian beam and the fundamental guided mode of a fundamental wave; it also provided high electric-field confinement in the case of both the fundamental and SHG waves in the core. Thus, a high overlap between nonlinear polarization and an SHG-guided mode was attained. The bonding of the device with the waveguide side positioned downward to a heat sink provided a large heat radiation area when pumping with a near-collimated Gaussian beam, which reduced the temperature rise and its gradient along the waveguide to minimize the phase mismatch. We demonstrated the green light generation of 1.6 W with 40% conversion efficiency using a 7-mm-long sample and 1.2-W SHG with 60% efficiency using an 18-mm-long sample.  相似文献   

6.
A waveguide polarizer using an ARROW (antiresonant reflecting optical waveguide) structure, of which the first cladding consists of three thin layers, is proposed. Theoretical calculation shows that this polarizer can achieve isolation over 30 dB/cm with an insertion loss of 0.01 dB/cm at 1.3 μm. Isolation of 83 dB/cm with insertion loss of 4.3 dB/cm was experimentally obtained at 0.633 μm. This structure is suitable for the integration of a polarization splitter and photodetector  相似文献   

7.
A novel hybrid coupler based on the antiresonant reflecting optical waveguides (ARROWs) is presented. This device consists of two parallel antiresonant reflecting optical waveguides with a tapered outermost cladding layer. Such a device can provide advantageous features of low radiation loss, low crosstalk at the output end, and compatible core dimensions and indexes with single-mode optical fibers. The staircase approximation and the eigenmode expansion analysis are used to analyze and optimize this device. In our design on a Si-substrate, radiation losses below 0.38 dB and extinction ratios below -20 dB for two waveguide channels are achieved. The beam propagation method (BPM) is also used to verify our design and analysis results  相似文献   

8.
A hybrid polyimide/Ta2O5/polyimide antiresonant reflecting optical waveguide (ARROW) is presented. The ARROW consists of fluorinated polyimide and tantalum pentoxide hybrid layers deposited on Si substrates. The propagation losses of the device are 0.6 and 2.6 dB/cm at 1.3 μm for TE and TM polarised lights, respectively  相似文献   

9.
Rigorous analysis of traveling-wave coplanar waveguide electrodes for LiNbO3 optical modulator applications is presented by using an extended full-wave mode-matching method. The microwave propagation characteristics under the composite influence of substrate anisotropy, uniform or etched buffer layers, finite electrode thickness and conductivity, and metallization undercutting are accurately assessed by employing a network equivalent formulation. Variations of the coplanar waveguide microwave effective index and the characteristic impedance at low frequencies due to finite electrode conductivity are illustrated, and are important even though the mode is quasi-TEM in nature. The effect of etching the SiO2 buffer layer is shown to be one possible method for lowering the microwave effective index while keeping the conductor loss at a fixed level  相似文献   

10.
For the purpose of a mechanical evaluation of a metal-cladding polarizer, a precise characterization of SiO2-x-Al thin-film succession fabricated on a LiNbO3 substrate was made as well as an experimental optimization of the SiO2-x-Al polarizer for the Ti:LiNbO3 waveguide. A 10-nm-thick SiO2-x was selected as the optimized underlay of a SiO2-x-Al polarizer for the Ti:LiNbO3 waveguide using a wavelength of λ=1.55 μm. Results of scratch testing show that the adhesive strength of SiO2-x-Al films was almost the same level as that of Ti-Au films on a thick SiO2 layer, commonly used for metallic underlay of Au-plated electrodes. From observing SiO2-x -Al film using a transmission electron microscope, it was confirmed that the 10-nm-thick SiO2-x underlay stratified well without serious thickness fluctuation  相似文献   

11.
Design optimization of ARROW-type diode lasers   总被引:1,自引:0,他引:1  
Antiresonant reflecting optical wavelength (ARROW)-type diode lasers have been optimized for high-power, single-spatial-mode operation. Calculated modal behavior predicts strong intermodal discrimination with low loss for the fundamental ARROW mode. Single-lobe far-field operation is obtained only when the high-index reflecting (antiresonant) cladding layers correspond to an optical thickness of λ1 (m+3/4), where λ is the lateral (projected) wavelength of the leaky wave in the high-index layers, and m is an integer (m=0, 1,. . .). Experimental results include stable, single-spatial mode operation to 500-mW peak pulsed power and 300-mW CW power at an emission wavelength of 0.98 μm  相似文献   

12.
Compact microracetrack resonator (MRR) devices are presented with small SU-8 polymer strip waveguides. The SU-8 strip waveguide has an SU-8 polymer core $(n {sim} 1.573)$ , a SiO$_{2}$ buffer $(n {sim} 1.445)$, and an air cladding. The fabricated straight waveguide has a low propagation loss of about 0.1 dB/mm. With such a high index-contrast optical waveguide, a compact MRR with a small bending radius ( $sim$150 $mu$m) are designed and fabricated. The measured spectral responses of the through/drop ports show a $Q$-factor of 8000.   相似文献   

13.
This letter proposes a new form of magneto-photonic crystal slab waveguides including nanoporous SiO2, with an extremely low refractive index, as the cladding material. These structures allow us to achieve physical strength and to render unnecessary holes extending to cladding layers. Our letter investigates the significance of the waveguide geometry for nonreciprocal phase shifts and losses, using a three-dimensional finite-element method with periodic boundary conditions. The guided modes exhibit small losses well below the light line and high nonreciprocal phase shifts with appropriate parameters, according to the calculations in this letter  相似文献   

14.
An effective model to evaluate the leakage currents for different stacked gates deep submicron MOS transistors is presented. For a given equivalent oxide thickness of a stacked gate, the gate leakage current decreases with an increase of high-k dielectric thickness or a decrease of interlayer thickness. Turning points at high gate biases of the IV curves are observed for Si3N4/SiO2, Ta2O5/SiO2, Ta2O5/SiO2−yNy, Ta2O5/Si3N4, and TiO2/SiO2 stacked gates except for Al2O3/SiO2 structure. Design optimization for the stacked gate architecture to obtain the minimum gate leakage current is evaluated.  相似文献   

15.
As the gate oxide thickness decreases below 2 nm, the gate leakage current increases dramatically due to direct tunneling current. This large gate leakage current will be an obstacle to reducing gate oxide thickness for the high speed operation of future devices. A MOS transistor with Ta2O5 gate dielectric is fabricated and characterized as a possible replacement for MOS transistors with ultra-thin gate silicon dioxide. Mobility, Id-Vd, Id-Vg, gate leakage current, and capacitance-voltage (C-V) characteristics of Ta2O5 transistors are evaluated and compared with SiO2 transistors. The gate leakage current is three to five orders smaller for Ta2O5 transistors than SiO2 transistors  相似文献   

16.
The propagation behavior of the four lower-order modes, HE11 , TE01, TM01, and HE21, in a radially anisotropic cylindrical waveguide with liquid crystal cladding is studied both theoretically and experimentally. The cylindrical waveguide is a doubly-clad fiber with an isotropic core and inner cladding and a radially anisotropic outer cladding made of nematic liquid crystal. Theoretically, the propagation and decay constants for the TE01 and TM01 modes are obtained by solving the wave equations exactly, while those for the HE11 and HE 21 modes are derived using perturbation techniques under the weakly guiding approximation. It is predicted that in such a structure the guided TE01 mode can be separated from the leaky HE11, TM01, and HE21 modes. The theoretical results show good agreement with the experimental observations for a 3 cm long fiber cell with a 5 μm inner cladding radius  相似文献   

17.
Impurity-free vacancy disordering (IFVD) using SiO2 and SrF2 dielectric caps to induce selective quantum-well (QW) intermixing in the GaAs-AlGaAs system is studied. The intermixing rate of IFVD was found to be higher in n-i-p and intrinsic than in p-i-n structures, which suggests that the diffusion of the Group III vacancy is not supported in p-type material. Single-mode waveguides have been fabricated from both as-grown and bandgap-tuned double-quantum-well (DQW) laser samples. Propagation losses as low as 8.5 dB cm-1 were measured from the bandgap-tuned waveguides at the lasing wavelength of the undisordered material, i.e., 860 nm. Simulation was also carried out to study the contribution of free-carrier absorption from the cladding layers, and the leakage loss induced by the heavily p-doped GaAs contact layer. It was found that the leakage loss contributed by the GaAs cap layer is significant and increases with wavelength. Based on IFVD, we also demonstrate the fabrication of multiple-wavelength lasers and multichannel wavelength division multiplexers using the one-step “selective intermixing in selected area” technique. This technique enables one to control the degree of intermixing across a wafer. Lasers with bandgaps tuned to five different positions have been fabricated on a single chip. These lasers showed only small changes in transparency current, internal quantum efficiency, or internal propagation loss, which indicates that the quality of the material remains high after being intermixed. Four-channel wavelength demultiplexers based on a waveguide photodetector design have also been fabricated. Photocurrent and spontaneous emission spectra from individual diodes showed that the absorption edge was shifted by different degrees due to the selective degree of QW intermixing. The results obtained also imply that the technique can be used in the fabrication of broad-wavelength emission superluminescent diodes  相似文献   

18.
The stripline pedestal anti-resonant reflecting optical waveguide (SPARROW) is an efficient and robust coupling device for silica microsphere whispering-gallery-mode excitation. The concept incorporates alternating layers of Si and SiO2, designed to isolate the mode of the sphere and the waveguide from the dielectric substrate. Experimental characterizations of this coupling technique are presented, including displacement measurements, and whispering-gallery-mode intensity mapping. Power extraction efficiencies of over 98% are reported  相似文献   

19.
We propose a special lithium-niobate (LiNbO3) single-mode waveguide for the realization of long-period gratings, which consists of a channel core embedded in a thin slab cladding. We fabricated the waveguide on a z-cut LiNbO3 substrate with a two-step proton-exchange process and demonstrated its suitability for grating application with a number of removable photoresist long-period gratings deposited on the waveguide surface. The waveguide fabrication process and the LiNbO3 waveguide structure could be further explored for the development of electrooptic gratings for high-speed applications.  相似文献   

20.
光子晶体太赫兹波导的损耗特性   总被引:7,自引:1,他引:7  
胡婕  陈鹤鸣 《中国激光》2008,35(4):567-572
提出了一种新型光子晶体太赫兹(THz)波导,该波导包层为硅介质中含有按三角形格子周期排列的空气孔,纤芯为有机材料聚乙烯(PE).应用平面波法(PWM)分析了这种光子晶体太赫兹波导的带隙结构,研究了空气填充率变化对光子带隙(PBG)结构的影响;然后应用频域有限差分法(FDFD)对不同参数太赫兹波导的损耗进行了计算.结果表明,这是一种适合太赫兹波传输的带隙效应波导,选择较高填充率,较大孔间距,较多周期结构层数可以得到较低的泄漏损耗,选取合适的参数损耗最低值可以达到1.5 dB/km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号