首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple approach is reported for the in situ growth of carbon nanotube-containing porous alumina structures by a thermal pyrolysis method. The composite was created by direct on-site growth of carbon nanotubes inside the porous alumina matrix, after introducing both a catalyst (Ni(NO3)2) and a carbon source (camphor) into the cavities of the large matrix brick. Pyrolysis was carried out when the pre-treated brick was heated in a furnace at 850 °C under a H2-Ar atmosphere. The resulting multi-walled carbon nanotubes with average diameters of 30-70 nm and lengths up to several micrometers are dispersed uniformly at each section of the alumina matrix. An improvement in the compression strength of the composites has been obtained, due to the inclusion of carbon nanotubes.  相似文献   

2.
In order to obtain homogeneously dispersed carbon nanotube (CNT) reinforcement with well structure in Al powder, a novel and simple approach was developed as a means of overcoming the limits of traditional mixing methods. This process involves the even deposition of Ni catalyst onto the surface of Al powder by impregnation route with a low Ni content (0.5 wt.%) and in situ synthesis of CNTs in Al powder by chemical vapor deposition. The in situ synthesized CNTs with well-crystallized bamboo-like structure in the composite powders can obviate the reaction with Al below 1000 °C. The feasibility of fabricating CNT/Al composites with high mechanical properties using the as-prepared composite powders was proved by our primary test, which indicated that the compressive yield stress and elastic modulus of 1.5 wt.%-CNT/Al composites synthesized by hot extrusion are 2.2 and 3.0 times as large as that of the pure Al matrix.  相似文献   

3.
Carbon nanotubes were grown by chemical vapor deposition (CVD) on different carbon fibre substrates namely, unidirectional (UD) carbon fibre tows, bi-directional (2D) carbon fibre cloth and three dimensional (3D) carbon fibre felt. These substrates were used as the reinforcement in phenolic resin matrix to develop hybrid CF–CNT composites. The growth morphology and other characteristics of the as grown tubes were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermal gravimetry (TGA) which confirmed a copious growth of multiwalled carbon nanotubes (MWNTs) on these substrates. The mechanical properties of the hybrid composites was found to increase with the increasing amount of deposited carbon nanotubes. The flexural strength (FS) improved by 20% for UD, 75% for 2D and 66% for 3D hybrid composites as compared to that prepared by neat reinforcements (without CNT growth) under identical conditions. Flexural modulus (FM) of these composites also improved by 28%, 54% and 46%, respectively.  相似文献   

4.
The use of the Taguchi method to optimize the processing parameters for the synthesis of high-quality single-walled carbon nanotubes (SWCNTs) in a vertical chemical vapor deposition reactor was demonstrated. An investigation containing 18 experiments featuring different parameters and levels was performed. SWCNTs with a low intensity D-band to G-band ratio of 0.027 of a Raman spectrum were obtained when the optimal processing conditions were adopted. The quantitative contribution of the processing parameters can be calculated using the analysis of variance. According to the analysis, the reactor temperature and the evaporation temperature of ferrocene significantly affect the graphitization of the synthesized SWCNTs, while the chamber pressure exerts an insignificant effect. The formation of carbon nanotube films with entangled networks during synthesis was recorded using a digital camera, and a synthesis mechanism was proposed. Using the optimal parameters, SWCNT fluff with a diameter of 7.0 cm and SWCNT roving with a diameter of approximately 1.0 cm and a length of over 30.0 cm can be attained. In this work, field-emission scanning electron microscopy and Raman spectroscopy and high-resolution transmission electron microscopy were adopted to examine the morphology and microstructure, respectively.  相似文献   

5.
Growing carbon nanotubes (CNT) on the surface of high performance carbon fibers (CF) provides a means to tailor the thermal, electrical and mechanical properties of the fiber–resin interface of a composite. However, many CNT growth processes require pretreatment of the fiber, deposition of an intermediate layer, or harsh growth conditions which can degrade tensile properties and limit the conduction between the fiber and the nanotubes. In this study, high density multi-wall carbon nanotubes were grown directly on two different polyacrylonitrile (PAN)-based carbon fibers (T650 and IM-7) using thermal Chemical Vapor Deposition (CVD). The influence of CVD growth conditions on the single-fiber tensile properties and CNT morphology was investigated. The mechanical properties of the resultant hybrid fibers were shown to depend on the carbon fiber used, the presence of a sizing (coating), the CNT growth temperature, growth time, and atmospheric conditions within the CVD chamber. The CNT density and alignment morphology was varied with growth temperature and precursor flow rate. Overall, it was concluded that a hybrid fiber with a well-adhered array of dense MWCNTs could be grown on the unsized T650 fiber with no significant degradation in tensile properties.  相似文献   

6.
H.C. Lee 《Thin solid films》2008,516(11):3646-3650
Variation in the height of carbon nanotubes (CNTs) grown has been co-related to the type of multi-barrier-layer used. Initially, various types of barrier-layers such as Al, Al2O3, Al/SiO2, Al2O3/SiO2 were prepared onto a n-type Si (100) substrate. The thickness of SiO2 was ∼ 550 nm, where as, Al2O3 and Al were ∼ 15 nm thick. These samples were covered with ∼ 1 nm thick Fe catalyst layer. The coated samples were subjected to the thermal chemical vapor deposition (T-CVD) process. SEM analysis showed that, for Al2O3/SiO2 barrier layers, the average height of the CNTs was ∼ 10 μm, where as, for other types of samples it was less than ∼ 1 μm. To investigate this, multi-barrier layers were characterized by dynamic secondary ion mass spectrometry (D-SIMS). The observed variation in height of CNTs is attributed to the variation in diffusivity of Fe atoms into multi-barriers-layers. The results showed that, diffusion of Fe catalyst atoms could severally affect height of CNTs.  相似文献   

7.
Semiconductor ZnS nanotubes arrays were synthesized in the pores of the porous anodic alumina (PAA) membranes by using metal organic chemical vapor deposition (MOCVD) template methods. The morphology and structure of the ZnS nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and X-ray diffraction (XRD). It is found that the ZnS nanotubes with diameters in range of 140–250 nm and the length up to tens of microns are polycrystalline. Energy-dispersion spectroscopy (EDS) and X-ray photoelectron spectroscopy analysis (XPS) indicate that the stoichiometric ZnS was formed. A green-blue emission band centered at 510 nm was observed in the photoluminescence spectrum of the ZnS nanotubes.  相似文献   

8.
A facile technique was developed to modify boron nitride (BN) nanosheets with iron oxides in order to fabricate highly-oriented polysiloxane/BN nanosheet composite films and their thermal properties were evaluated according to the orientation of BN. The surfaces of the BN nanosheets were modified with iron oxide nano particles by chemical vapor deposition, and their one-dimensional arrangement with variation of BN content was controlled under a magnetic field. The homogeneous suspension of BN nanosheets and pre-polymers of polysiloxane was cast on a glass spacer, and subjected to a magnetic field before the mixture was crosslinked. X-ray diffraction, transmission electron microscopy, and superconducting quantum interference device measurements were employed to identify the phases and amounts of iron oxide nano particles deposited on the BN nanosheets. The results revealed that the modified BN nanosheets were aligned either horizontally or vertically to the film plane, depending on the direction of magnetic flux with high anisotropy. The transmittance and thermal conductivity of the nano composite films were improved due to the orientation of the BN nanosheets inside the polymer matrix.  相似文献   

9.
The photolithography process has generally been used for the making of catalyst layers used for the synthesis of CNTs due to its comparative ease. However, this method results in the formation of undesirable catalyst particles, which deteriorate the quality of the devices. Therefore, we tried to form a catalyst layer without using any lift-off or wet etching process, especially for the formation of carbon nanotube interconnects. After spin coating the samples, which were previously fabricated with several vias, with an iron-acetate solution, the catalyst layer was pulled down into the bottom of the holes through the force of gravity. We were able to remove the catalyst layer which was coated over undesirable areas, by TMAH (tetramethylammonium hydroxide, N(CH3)4OH) treatment. After the catalyst deposition process, we synthesized CNTs and observed them by scanning electron microscopy (SEM).  相似文献   

10.
This paper presents the properties of epoxy nanocomposites, prepared using a synthesized hybrid carbon nanotube–alumina (CNT–Al2O3) filler, via chemical vapour deposition and a physically mixed CNT–Al2O3 filler, at various filler loadings (i.e., 1–5%). The tensile and thermal properties of both nanocomposites were investigated at different weight percentages of filler loading. The CNT–Al2O3 hybrid epoxy composites showed higher tensile and thermal properties than the CNT–Al2O3 physically mixed epoxy composites. This increase was associated with the homogenous dispersion of CNT–Al2O3 particle filler; as observed under a field emission scanning electron microscope. It was demonstrated that the CNT–Al2O3 hybrid epoxy composites are capable of increasing tensile strength by up to 30%, giving a tensile modulus of 39%, thermal conductivity of 20%, and a glass transition temperature value of 25%, when compared to a neat epoxy composite.  相似文献   

11.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   

12.
Vertically aligned few layered graphene (FLG) nanoflakes were synthesised on silicon substrates by microwave plasma enhanced chemical vapour deposition (MPECVD) method. Transmission electron microscopy (TEM) shows that the structures have highly graphitized terminal planes of 1–3 layers of graphene. Raman spectroscopy revealed a narrow G band with a FWHM of ∼23 cm−1 accompanied by a strong G′ (2D) band, with a FWHM of ∼43 cm−1 and an IG/IG ratio of 1, which are all the characteristics of highly crystallized few layered graphene. The FLG electrodes demonstrate fast electron transfer (ET) kinetics for Fe(CN)63−/4− redox system with an electron transfer rate, ΔEp, of 60 mV. Platinum (Pt) nanoparticles of ∼6 nm diameter were deposited on as grown FLGs using magnetron DC sputtering for methanol oxidation studies. When used as electrodes for methanol oxidation, a mass specific peak current density of ∼62 mA mg−1 cm−2 of Pt is obtained with a high resistance to carbon monoxide (CO) poisoning as evident by a high value of 2.2 for the ratio of forward to backward anodic peak currents (If/Ib).  相似文献   

13.
The addition of nanoparticles has been reported as an option to increase the fracture toughness of thermosetting polymers without compromising the stiffness. In this paper, alumina or carbon nanotubes (CNTs), in three different concentrations, were dispersed in an epoxy resin. Mechanical properties were measured through tensile test and the results indicate increases for all nanocomposites, with a maximum for the addition of 0.5% of CNTs (17% in elastic modulus and 22% in ultimate stress). Using TEM images, it was possible to identify the nanostructures and mechanisms that lead to improved stiffness. Fracture toughness tests and SEM images showed that cavitation – shear yielding (for epoxy/alumina nanocomposites) and crack bridging – pull-out (for epoxy/CNTs nanocomposites) are the predominant mechanisms.  相似文献   

14.
To improve the ablation resistance of PIP-C/SiC composites, SiC/Zr–Si–C multilayer coating was prepared by chemical vapor deposition (CVD) using methyltrichlorosilane (MTS) and hydrogen as the precursors and molten salt reaction using KCl–NaCl, sponge Zr and K2ZrF6, then the ablation capability of the coated composites was tested under oxyacetylene torch flame. The linear and mass ablation rates were much lower than those of uncoated samples. The linear and mass ablation rates of the three coating coated samples reached 0.0452 mm/s and 0.031 g/s, decreased by 27.3% and 27.1%, respectively. Moreover, the linear and mass ablation rates of the five coating coated samples reached 0.0255 mm/s and 0.0274 g/s, decreased by 59.0% and 35.5%. The gases released during ablation could take away a lot of heat, which was also helpful to the protection of the composites.  相似文献   

15.
以LaNi5合金为催化剂制备碳纳米管的研究   总被引:1,自引:0,他引:1  
在800℃下,以LaNi5合金粉末为催化剂,乙炔为原料,采用化学气相沉积法(CVD)分别在氢气氛和氮气氛下合成了多壁碳纳米管.研究了以LaNi5合金粉末为催化剂的条件下,反应气氛对生成碳纳米管的影响,探讨了CVD法生长碳纳米管的反应机理及LaNi5合金的催化机理.实验结果表明,反应过程中LaNi5分解为La3Ni7和Ni;在碳纳米管的生成过程中,La3Ni7进一步分解为La和Ni.氢的参与能显著改变生成的碳纳米管的质量.  相似文献   

16.
The electrical conductivity of graphene, multi-wall carbon nanotubes, carbon black nanopowders and graphite powder is characterized using paper-like films and by means of powder compression. The large difference in surface area of these materials results in different packing density and number of contact spots, influencing the macroscopic conductivity of the compacts during powder compression. The results are compared with the percolation threshold and final conductivity of polypropylene (PP) composites, using latex technology for the incorporation of the carbon fillers in the polymer. Even though the PP composites produced in this work exhibit percolation thresholds as low as 0.3 wt.%, the final conductivity for all the composites is below 1.5 S/m. Reasons why the high value of ∼103 S/m, which is obtained for graphene- and nanotube-based paper films or graphite compacts, is not reached for the composites are investigated.  相似文献   

17.
18.
Model polymer composites containing carbon nanotube (CNT) grafted fibres provide a means to investigate the influence of nanostructures on interfacial properties. Well-aligned nanotubes, with controllable length, were grown on silica fibres by using the injection chemical vapour deposition method, leading to a significant increase of the fibre surface area. In single fibre tensile tests, this CNT growth reaction reduced the fibre strength, apparently due to catalyst etching; however, the fibre modulus increased significantly. Contact angle measurements, using the drop-on-fibre method, indicated an excellent wettability of the CNT-grafted fibres by poly(methyl methacrylate) (PMMA). PMMA model composites were fabricated and studied using the single fibre fragmentation tests. A dramatic improvement (up to 150%) of the apparent interfacial shear strength (IFSS) was obtained for the composites containing CNT-grafted fibres. The improvement of IFSS was also influenced by the length and morphology of the grafted CNTs.  相似文献   

19.
Bulk acoustic waves (BAWs) are used to align multi-walled carbon nanotubes (MWCNTs) in polymer composite materials. MWCNTs are first dispersed in the liquid state of a thermoset resin and aligned using standing BAWs. Cross-linking of the resin fixates the aligned MWCNTs in the polymer matrix material. We have quantified the alignment obtained with this method on the macro, micro, and nanoscale, and it is found to be similar to other alignment techniques such as stretching, slicing, and wet spinning. The elastic modulus and ultimate tensile strength of composite material specimens with aligned MWCNTs, fabricated using this technique, are evaluated and compared with specimens consisting of randomly oriented MWCNTs and resin material without MWCNTs. Different MWCNT loading rates are considered. The elastic modulus of composite material specimens with only 0.15 weight percent aligned MWCNTs is observed to be 44% higher than specimens with randomly oriented MWCNTs, and 51% higher than specimens without MWCNTs. However, further increasing the MWCNT loading rate does not significantly increase the elastic modulus and ultimate tensile strength, likely because of insufficient dispersion of MWCNTs in the thermoset matrix material.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号