首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Dispersion of nanoparticles and its effect on the mechanical properties were investigated by fabricating nanocomposites via conventional sonication, sol–gel, and a combination of sonication and sol–gel methods. Silica nanoparticles in epoxy produced via sol–gel was procured as Nanopox F 400 to produce silica/epoxy nanocomposite whereas the conventional sonication method was followed to produce alumina/epoxy and carbon nanofibers (CNF)/epoxy nanocomposites. Then, the conventional sonication method was employed in the presence of sol–gel nanoparticles to improve the dispersion quality of conventional dry nanoparticles as well as to increase the particle loading. In the current method, the epoxy with silica nanoparticles produced by the sol–gel method was used as the starting material for sonication. In the subsequent step, particles of the second type were added to the silica/epoxy precursor via sonication. Using this method, two different types of nanoparticles were added to produce hybrid nanocomposites with higher particle loading where alumina and CNF were used as hybridizing particles. TEM micrographs revealed an improved dispersion quality of alumina nanoparticles and CNFs in the presence of very well dispersed silica nanoparticles. The improvement in dispersion was reflected in much improved mechanical properties of the nanocomposites.  相似文献   

2.
Mechanical and thermal properties of non-crimp glass fiber reinforced clay/epoxy nanocomposites were investigated. Clay/epoxy nanocomposite systems were prepared to use as the matrix material for composite laminates. X-ray diffraction results obtained from natural and modified clays indicated that intergallery spacing of the layered clay increases with surface treatment. Tensile tests indicated that clay loading has minor effect on the tensile properties. Flexural properties of laminates were improved by clay addition due to the improved interface between glass fibers and epoxy. Differential scanning calorimetry (DSC) results showed that the modified clay particles affected the glass transition temperatures (Tg) of the nanocomposites. Incorporation of surface treated clay particles increased the dynamic mechanical properties of nanocomposite laminates. It was found that the flame resistance of composites was improved significantly by clay addition into the epoxy matrix.  相似文献   

3.
Nanocomposites consisting of an epoxy network matrix and a silica reinforcing phase were produced from a resin mixture functionalized with alkoxysilane coupling agents. Particulate nanocomposites were obtained by dispersing silica-organosol particles in the resin, while bicontinuous phase nanocomposirtes were obtained by the in-situ hydrolysis and condensation of tetraethoxysilane containing minor amounts of γ-glycidoxyl trimethoxysilane. Functionalization of the epoxy resin with an amine silane coupling agent was found to be more effective in aiding the dispersion of silica sol particles in the resin than the corresponding resin functionalized with a mercaptan silane coupling agent. Similar differences in the efficiency of coupling agent grafted on to the epoxy resin were observed for bicontinuous phase nanocomposites. The amine silane functionalization produces denser silica domains, which results in a higher rubber-plateau modulus and higher resistance to solvent penetration. The study also showed that the particulate nanocomposites are very ineffective in improving the solvent resistance of the base resin, even when the resin is grafted with a very efficient amine silane coupling agent, which promotes interfacial bonding. The different types of morphology were characterized by transmission electron microscopy and small angle X-ray scattering analysis.  相似文献   

4.
A technique was developed to improve the strength of unidirectional composites by enhancing the matrix properties through nanoparticles infusion. A commercially available standard DGEBA epoxy with silica nanoparticles (Nanopox F 400) was used as the matrix to make fiber composites. The silica nanoparticles in Nanopox were grown in situ via a sol–gel process resulting in a concentration of 40 wt% which was later diluted to 15 wt% particle loading. TEM images showed very uniform dispersion of silica nanoparticles with a size distribution of about 20 nm. Compression test revealed a substantial improvement (40%) in elastic modulus of the modified epoxy. A modified vacuum assisted resin transfer molding process was used to fabricate unidirectional E-glass fiber reinforced silica/epoxy nanocomposites. Inclusion of silica nanoparticles dramatically increased the longitudinal compressive strength and moderately increased the longitudinal and transverse tensile strengths. A microbuckling model was used to verify the compression testing results.  相似文献   

5.
采用廉价的环氧树脂(EP)与正硅酸乙酯(TEOS)反应生成改性前驱体,然后水解,再将水解液与熔融己内酰胺混匀,通过原位生成法制备出新型PA6/EP/SiO2纳米复合材料。研究了SiO2无机粒子的加入对PA6聚合反应的影响。端基分析和高效液相色谱仪(HPLC)测试结果表明:随SiO2加入量的增加,PA6分子量及低聚物含量有下降趋势。  相似文献   

6.
The porous WO3 (pore size 2–5 nm) nanoparticles were synthesized using a high intensity ultrasound irradiation of commercially available WO3 nanoparticles (80 nm) in ethanol. The high resolution transmission electron microscopic (HRTEM) and X-ray studies indicated that the 2–5 nm uniform pores have been created in commercially available WO3 nanoparticles without much changing the initial WO3 nanoparticles (80 nm) sizes. The nanocomposites of WO3/SC-15 epoxy were prepared by infusion of 1 wt.%, 2 wt.% and 3 wt.% of porous WO3 nanoparticles into SC-15 epoxy resin by using a non-contact (Thinky) mixing technique. Finally the neat epoxy and nanocomposites were cured at room temperature for about 24 h in a plastic rectangular mold. The cured epoxy samples were removed and precisely cut into required dimensions and tested for their thermal and mechanical properties. The HRTEM and SEM studies indicated that the sonochemically modified porous WO3 nanoparticles dispersed more uniformly over the entire volume of the epoxy (without any settlement or agglomeration) as compared to the unmodified WO3/epoxy nanocomposites.  相似文献   

7.
In this study, processing, morphology and properties of poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide) (PEO-PPO-PEO) triblock copolymer and clay modified cyanate ester/epoxy hybrid nanocomposites were investigated. The PEO-PPO-PEO triblock copolymer preferentially reaction-induced microphase separate into spherical micelles in the cyanate ester/epoxy matrix. PEO-PPO-PEO was used as both nanostructuring agent for cyanate ester/epoxy blended resin and thus the predominantly intercalated and few exfoliated platelets of were also observed with clay, which successfully reduced the brittleness of the cyanate ester/epoxy blended resin increasing the toughness of designed materials. The stiffness and heat resistance of the neat BCE/EP resin could be retained in the BCE/EP/F68/clay hybrid nanocomposites. The optimum property enhancement was observed in the hybrid nanocomposites containing 5 wt% PEO-PPO-PEO and 3 wt% clay. The thermo/mechanical properties of the hybrid nanocomposites depend on microstructure, dispersion state and the ratio between organic and inorganic modifiers content.  相似文献   

8.
On fracture toughness of nano-particle modified epoxy   总被引:1,自引:0,他引:1  
A systematic study on the effects of silica and rubber nano-particles on the fracture toughness behavior of epoxy was conducted. Mode I fracture toughness (GIC) of binary silica/epoxy, binary rubber/epoxy and ternary silica/rubber/epoxy nanocomposites with different particle weight fractions was obtained by compact tension tests. It is found that GIC of epoxy can be significantly increased by incorporating either rubber or silica nano-particles. However, hybrid nanocomposites do not display any “synergistic” effect on toughness. Microstructures before and after fracture testing were examined to understand the role of nano-particles on the toughening mechanisms.  相似文献   

9.
Shape memory silica/epoxy composites were successfully prepared by hydrolysis of tetraethoxysilane (TEOS) within the epoxy matrix via latex, freeze-drying, and hot-press molding method. The silane coupling agent 3-triethoxysilylpropylamine (KH550) was introduced to improve the interfacial properties between the in-situ generated silica particle and epoxy matrix. The morphology structure and the effect of the content of the in-situ formed silica on the mechanical and shape memory properties of the silica/epoxy composites were studied. The experimental results indicated that the silica particles were homogenously dispersed and well incorporated into the epoxy matrix. Significant improvements were achieved in the mechanical property of the organic–inorganic hybrid materials. The silica/epoxy composites exhibited high shape recovery and fixity ratio approximately 100% even after 10 thermo-mechanical cycles.  相似文献   

10.
This paper presents experimental studies aimed to achieve homogeneous mixtures of halloysite nanotubes (HNTs) with epoxies and halloysite–epoxy nanocomposites through ball mill homogenisation and chemical treatments. It was demonstrated that ball mill homogenisation and potassium acetate (PA) treatment were effective approaches to reduce the size of halloysite particle clusters in the epoxy matrix. However, silane and cetyl trimethyl ammonium chloride (CTAC) treatments, particularly the latter, were found to increase the possibility of particle agglomeration. With the improvement in particle dispersion in epoxies, enhancements in the mechanical properties of the halloysite–epoxy nanocomposites were achieved, which were attributed to several mechanisms including interactions between the advancing crack and halloysite particle clusters, interfacial debonding, halloysite tube breakage and pull-out.  相似文献   

11.
Electroactive response of suspensions of mesoporous silica and its nanocomposites with conducting polyaniline and copolyaniline inside its channels were examined under an electric field, mainly focusing on their rheological characteristics. Initially these conducting polymer/mesoporous silica nanocomposites were synthesized and their physical properties were studied by scanning electron microscopy, transmission electron microscopy and N2-adsorption isotherm. Then, mesoporous silica and its nanocomposites were dispersed in silicone oil as an electrorheological (ER) material. Typical ER behaviors of shear stress and shear viscosity curves as a function of electric field and shear rate were observed. Without an electric field, the suspensions behaved almost like a Newtonian fluid. However, under an electric field, their shear stresses increased with shear rate, demonstrating a yield stress. Compared with mesoporous silica and polyaniline, polyaniline/mesoporous silica-based ER fluid showed enhanced ER performance due to the anisotropic characteristics. In addition, it was found that a suggested shear stress model (Cho–Choi–Jhon model) well described the flow curves.  相似文献   

12.
Fibre reinforced composites are indispensable in the field of modern lightweight structures, such as used in aerospace, automotive industry or in wind power plants. Those materials provide high weight savings and increase the efficiency of a structure significantly. Therefore, various efforts are made to continuously improve the quality of the matrix and the fibres. By embedding nano-particles into the epoxy matrix, the mechanical properties as well as the electrical and thermal characteristics can significantly be improved [1]. In most cases these nano-sized particles are produced as dry powders not as single primary particles but rather as particle collectives consisting out of several primary particles. For the application in reinforced composites the particles must be suspended in epoxy resin as separately dispersed primary particles or in a certain aggregate size. Generally, the influencing parameters to break up the aggregates in a dispersion process can be divided into the stress mechanism, the intensity and the frequency of the dispersing machine itself, the properties of the dispersed particles (e.g. the particle–particle interactions) the properties of the homogenous phase and the particle–resin-interactions. Besides the effect of the chosen dispersing machine the optimization of the dispersing process was investigated by applying modified particle surfaces and varying the fluid properties. The results show that the surface properties of the particles must fit to the epoxy resin properties and the attractive forces between the primary particles must be reduced or the stabilization improved, respectively. An indication for an improved stabilization and adjustment of the particles surface properties to the fluid properties can be obtained by measurements of the contact angle and the rheological properties. Generally, an increase of viscosity and mass fraction of the product leads to a higher energetic efficiency of the dispersion process in the stirred media mill and three-roll-mill.  相似文献   

13.
Graphene was noncovalently functionalized with poly(sodium 4-styrenesulfonate) (PSS) and then successfully incorporated into the epoxy resin via in situ polymerization to form functional and structural nanocomposites. The morphology and structure of PSS modified graphene (PSS-g) were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The effects of PSS-g additions on tensile, electrical and thermal properties of the epoxy/graphene nanocomposites were studied. Noncovalent functionalization improved interfacial bonding between the epoxy matrix and graphene, leading to enhanced tensile strength and modulus of resultant nanocomposites. The PSS-g additions also enhanced electrical properties of the epoxy/PSS-g nanocomposites, resulting in a lower percolation threshold of 1.2 wt%. Thermogravimetric and differential scanning calorimetric results showed the occurrence of a two-step decomposition process for the epoxy/PSS-g nanocomposites.  相似文献   

14.
Polyetherketone cardo (PEK-C) nanofibres containing vapour-grown carbon nanofibres (VGCNFs) were electrospun, and used for toughening and reinforcing a triglycidyl amino phenol (TGAP) epoxy resin. The addition of PEK-C/VGCNF nanofibres to the epoxy resin led to the distribution of VGCNFs primarily within the phase separated PEK-C-rich domains. Synergistic effects of thermoplastic PEK-C and VGCNFs on the mechanical properties, phase morphologies and thermal stability of the resultant epoxy matrix composites were observed when the PEK-C/CNF nanofibres were blended at a low content into the epoxy resin. Strong and tough multifunctional nanocomposites were prepared with the addition of 5 wt.% PEK-C/CNF nanofibres to the epoxy matrix.  相似文献   

15.
Curing of a resin system is the critical and productivity controlling step in the fabrication of thermosetting matrix composites including nanocomposites. In the past few years, in the case of polymer-layered silicate nanocomposites, too many interests were taken in the material structure and properties, while only a few researches were carried on the cure behavior of this type of nanocomposite. The goal of the present work pays mainly attention to the cure kinetics for epoxy resin/organo-montmorillonite (Org-MMT)/2-ethyl-4-methyl-imidazole (2,4-EMI) nanocomposites. The experiments of monitoring curing process of nanocomposite materials are successively made via the HLX-II Resin Curemeter. The results derived from the non-equilibrium thermodynamic fluctuation theory indicated that the theoretical prediction is in good agreement with the experimental cure curve. The apparent activation energies were evaluated based on the gel time, tg and relaxation time, τ, respectively. The increasing of cure temperature accelerated the cross-linking reactions for either nanocomposites or pure epoxy system. The addition of Org-MMT reduces the gel time, tg as well as the completed cure time, tc, and increases the rate of cure.  相似文献   

16.
In the current study we investigated the effect of carbon nanotubes (CNTs) addition on the erosive wear response of epoxy resin and carbon fibre reinforced laminates (CFRPs) and demonstrated the positive synergy of CNTs and carbon fibres, which resulted in almost 50% decrease of the erosion rate (ER) of the CFRPs at high impact angles (90°). Incorporation of CNTs led in slight increase of the ER of the epoxy systems, especially at low impact angles. The relative fibre orientation in the CFRPs had a negligible effect on the erosive wear response mainly due to the quasi isotropic nature of the tested CFRPs. Based on the erosion efficiency parameter the response of the epoxy systems was characterised as semi-brittle, while CFRPs behaved in a brittle manner. Scanning electron micrograph provided evidence that the presence of CNTs reduced the amount of broken and/or detached fibres in the case of CFRPs.  相似文献   

17.
Luminescent nanocomposite of epoxy filled with Er3+-doped yttria-stabilized zirconia (7YSZ) is prepared with their luminescence spectra measured in the temperature range 123–423 K. Fluorescence intensity ratio (FIR) of the two Er3+ emissions is also obtained in the same temperature range. Er–7YSZ/epoxy nanocomposites exhibited higher sensitivity of 0.18%/K as compared with the bare Er–7YSZ particles. Luminescence thermometry is demonstrated by using the nanocomposites as temperature sensitive paint (TSP) with a resolution of 1 K. The advantage of FIR technique combined with the excellent thermal stability of epoxy matrix makes the Er–7YSZ/epoxy nanocomposites viable as temperature sensitive paint for aerodynamic applications.  相似文献   

18.
The addition of nanoparticles has been reported as an option to increase the fracture toughness of thermosetting polymers without compromising the stiffness. In this paper, alumina or carbon nanotubes (CNTs), in three different concentrations, were dispersed in an epoxy resin. Mechanical properties were measured through tensile test and the results indicate increases for all nanocomposites, with a maximum for the addition of 0.5% of CNTs (17% in elastic modulus and 22% in ultimate stress). Using TEM images, it was possible to identify the nanostructures and mechanisms that lead to improved stiffness. Fracture toughness tests and SEM images showed that cavitation – shear yielding (for epoxy/alumina nanocomposites) and crack bridging – pull-out (for epoxy/CNTs nanocomposites) are the predominant mechanisms.  相似文献   

19.
Poly(DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate) (PFR) was synthesized via the reaction between 10-(2,5-dihydroxyl-phenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-BQ) and pentaerythritol diphosphonate dichloride (SPDPC). The structures of PFR were characterized by Fourier transformed infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance (1H NMR). Thermal degradation behaviors and flame retardant properties of the epoxy resin (ER)/PFR systems were investigated from the thermogravimetric analysis (TGA), UL-94 test and the limiting oxygen index (LOI) test. Moreover, the surface morphology of the char residue was studied by scanning electron microscopy (SEM). When the PFR content reached 10 wt%, the epoxy resin system met the UL-94 V0 classification and the LOI value of 30.2. The microscale combustion calorimetry (MCC) was used to evaluate the combustion behaviors of the ER/PFR. It was found that the addition of PFR obviously decreased the value of peak heat release rate and total heat release of the hybrids. The TGA results showed that the epoxy resin with 10 wt% PFR exhibited high char yields. The high char yields and the high limiting oxygen index values were found to certify the excellent flame retardancy of this phosphorus-containing epoxy resin.  相似文献   

20.
A novel soft magnetic composite (SMC) based on spherical FeSi particles precisely covered by hybrid phenolic resin was designed. The hybrid resin including silica nano-rods chemically incorporated into the phenolic polymer matrix was prepared by the modified sol–gel method. A chemical bridge connecting silica nano-rods with the base polymeric net was verified by FTIR, 13C and 29Si NMR spectroscopy, whereas the shape and size of silica nano-rods were determined by TEM. It is shown that the modification of polymeric resin by silica nano-rods generally leads to the improved thermal and mechanical properties of the final samples. The hybrid resin serves as a perfect insulating coating deposited on FeSi particles and the core–shell particles can be further compacted by standard powder metallurgy methods in order to prepare final samples for mechanical, electric and magnetic testing. SEM images evidence negligible porosity, uniform distribution of the hybrid resin around FeSi particles, as well as, dimensional shape stability of the final samples after thermal treatment. The hardness, flexural strength and density of the final samples are comparable to the sintered SMCs, but they simultaneously exhibit much higher specific resistivity along with only slightly lower coercivity and permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号