首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This article examines a hybrid storage system comprising fuel cells (FC) and supercapacitors (SC) for an electrical microgrid located in the Renewable Energies Laboratory at the Public University of Navarre. Firstly, the hybrid storage system size was determined based on an energy and frequency analysis of real data for the electrical power generated and consumed in the microgrid over the course of a year in operation. This was followed by the experimental characterisation of the electrical behaviour of the FCs and SCs, in steady-state and dynamic modes of operation. Furthermore, an electrical model was developed for the FCs and another for the SCs, both of which gave satisfactory results in the experimental validations. Finally, a study was made of the storage system, comprising four 1.2 kW proton exchange membrane fuel cells (PEMFC) and three SCs of 83.3 F and 48.6 V each, in a real microgrid operating environment. Specifically, a comparison was made between the storage system solely comprising FCs and the hybrid storage system formed by a combination of FCs and SCs. The hybridisation of the FCs and SCs resulted in a complete, high-capacity energy storage system, to guarantee supply even in those months with low renewable energy resources and, in turn, able to provide the fast dynamic responses regularly required by supply and demand in the microgrid.  相似文献   

2.
Hydrogen can be used as an Energy Storage System (ESS) in a microgrid allowing to store surplus generation of variable renewable sources for later use. Research in the area mainly refers to the sizing of the components, however few studies evaluate the optimal technology selection and operation of microgrids using hydrogen as ESS. In this work, a model to determines optimal selection and to dispatch of Distributed Energy Resources (DER) allowing to evaluate the viability of hydrogen application as ESS in a microgrid is developed. The model is implemented in GAMS, using mixed integer linear programming, and applied in a hypothetical microgrid using as input data load profiles and commercial data available in literature. The results indicate the economical and environmental benefits of DER adoption, but the currently high investment costs make it infeasible to adopt hydrogen into a microgrid. However, when considering environmental costs and market prospects, the adoption of this technology became a good alternative, improving the energy management and reducing the total annual cost of the microgrid by 14.1%.  相似文献   

3.
Renewable energy integration into existing or new energy hubs together with Green technologies such as Power to Gas and Green Hydrogen has become essential because of the aim of keeping the average global temperature rise within 2 °C with regard to the Paris Agreement. Hence, all energy markets are expected to face substantial transitions worldwide. On the other hand, investigation of renewable energy systems integrated with green chemical conversion, and in particular combination of green hydrogen and synthetic methanation, is still a scarce subject in the literature in terms of optimal and simultaneous design and operation for integrated energy grids under weather intermittency and demand uncertainty. In fact, the integration of such promising new technologies has been studied mainly in the operational phase, without considering design and management simultaneously. Thus, in this work, a multi-period mixed-integer linear programming (MILP) model is formulated to deal with the aforementioned challenges. Under current carbon dioxide limitations dictated by the Paris Agreement, this model computes the best configuration of the renewable and non-renewable-based generators, their optimal rated powers, capacities and scheduling sequences from a large candidate pool containing thirty-nine different equipment simultaneously. Moreover, the effect of the intermittent nature of renewable resources is analyzed comprehensively under three different scenarios for a specific location. Accordingly, a practical scenario generation method is proposed in this work. It is observed that photovoltaic, oil co-generator, reciprocating ICE, micro turbine, and bio-gasifier are the equipment that is commonly chosen under the three different scenarios. Results also show that concepts such as green hydrogen and power-to-gas are currently not preferable for the investigated location. On the other hand, analysis shows that if the emission limits are getting tightened, it is expected that constructing renewable resource-based grids will be economically more feasible.  相似文献   

4.
Hydrogen energy storage systems (HydESS) and their integration with renewable energy sources into the grid have the greatest potential for energy production and storage while controlling grid demand to enhance energy sustainability. This paper presents a bibliometric analysis based on a comprehensive review of the highly cited articles on HydESS to provide a detailed insight into future directions and applications. The study was carried out by using the Scopus database search engine to look for filtered keywords in the HydESS and related research. It can be demonstrated that the HydESS literature expanded rapidly from 2016 to 2021 compared to 2011 to 2015. It is found that 89.17% of published articles explained control and test systems-based methods, whereas 10.83% of publications discuss review assessments. Our analysis of highly cited articles on HydESS highlights several aspects, such as methods and systems, issues, difficulties, and challenges to establishing current constraints and research gaps. This evaluation can enhance operational performance, environmental friendliness, energy savings, uninterrupted power supply service, cost benefits, on-site generation, and adaptability. It would be beneficial for technology development and the growth of the hydESS industry. This study may act as a guideline not only for academics in determining the line of research and generating additional discoveries, but also for the government in formulating financial strategies.  相似文献   

5.
Renewable energy represents an area of tremendous opportunity for India. Energy is considered a prime agent in the generation of wealth and a significant factor in economic development. Energy is also essential for improving the quality of life. Development of conventional forms of energy for meeting the growing energy needs of society at a reasonable cost is the responsibility of the Government. Limited fossil resources and associated environmental problems have emphasized the need for new sustainable energy supply options. India depends heavily on coal and oil for meeting its energy demand which contributes to smog, acid rain and greenhouse gases’ emission. Last 25 years has been a period of intense activities related to research, development, production and distribution of energy in India.Though major energy sources for electrical power are coal and natural gas, development and promotion of non-conventional sources of energy such as solar, wind and bio-energy, are also getting sustained attention. The use of electricity has grown since it can be used in variety of applications as well as it can be easily transmitted, the uses of renewable energy like wind and solar is rising. Wind energy is a clean, eco-friendly, renewable resource and is nonpolluting. The gross wind power potential is estimated at around 48,561 MW in the country; a capacity of 14,989.89 MW up to 31st August 2011 has so far been added through wind, which places India in the fifth position globally. This paper discusses the ways in which India has already supported the growth of renewable energy technologies i.e. wind energy and its potential to expand their contribution to world growth in a way that is consistent with world's developmental and environmental goals. The paper presents current status, major achievements and future aspects of wind energy in India.  相似文献   

6.
V. Azbe  R. Mihalic 《Renewable Energy》2006,31(14):2370-2384
This article describes a direct current (DC) isolated network that is infed with distributed generation from renewable sources and cogeneration units. The sources are connected to the network via DC/DC converters to keep the voltage within a defined range and to ensure the required power flow. The consumption is directly connected to the DC network, without any DC/DC converter. The storage is located at a single point in the network. A simulation analysis based on a DC-network model shows that it is possible to operate a DC network with standard elements used for the generation side as well as for the consumption side. The key elements are the DC/DC converters, which control the voltage of the network and optimize the operation of the sources.  相似文献   

7.
H. Lund  E. Münster 《Renewable Energy》2003,28(14):2179-2193
This paper presents the energy system analysis model EnergyPLAN, which has been used to analyse the integration of large scale wind power into the national Danish electricity system. The main purpose of the EnergyPLAN model is to design suitable national energy planning strategies by analysing the consequences of different national energy investments. The model emphasises the analysis of different regulation strategies and different market economic optimisation strategies.At present wind power supply 15% of the Danish electricity demand and ca 50% is produced in CHP (combined heat and power production). The model has been used in the work of an expert group conducted by the Danish Energy Agency for the Danish Parliament. Results are included in the paper in terms of strategies, in order to manage the integration of CHP and wind power in the future Danish energy supply in which more than 40% of the supply is expected to come from wind power.  相似文献   

8.
This paper explores the trends in the deployment and integration of distributed generation in Germany, Denmark and Sweden. The study concentrates on the regulation of renewable energy generation with a focus on grid access and connection mechanisms. The high rate of distributed generation penetration is mainly based on the early support that these countries gave to the expansion of renewable energy generation – mainly wind and solar – within their respective national policies. Germany and Denmark are the ones with the most sophisticated support schemes, which have shown a dynamic design over time. In terms of connections, Germany has the most favorable connection regime which provides not only priority connection but also priority grid access for generation units that produce electricity from renewable energy sources. Sweden guarantees equal treatment among different technologies (i.e. a non-discrimination principle). High connection costs have been observed specially in Germany and Denmark. The costs of network upgrades are usually socialised across demand customers. However, integration issues should be taken into consideration in order to avoid expansion of distributed generation in a way which unnecessarily raises total system costs, via high connection costs.  相似文献   

9.
The production of hydrogen is still a major challenge, due to the high costs and often also environmental burdens it generates. It is possible to produce hydrogen in emission-free way: e.g. using a process of electrolysis powered by renewable energy. The paper presents the concept of a research, experimental stand for the storage of renewable energy in the form of hydrogen chemical energy with the measurement methodology. The research involves the use of proton exchange membrane electrolysis technology, which is characterized by high efficiency and flexibility of energy extraction for the process of electrolysis from renewable sources. The system consist of PV panel, PEM electrolyzer, battery, programmable logic controller system and optional a wind turbine. Preliminary experimental tests results have shown that the electrolyzer can produce in average 158.1 cc/min of hydrogen with the average efficiency 69.87%.  相似文献   

10.
A review on fuel cell technologies and power electronic interface   总被引:3,自引:0,他引:3  
The issue of renewable energy is becoming significant due to increasing power demand, instability of the rising oil prices and environmental problems. Among the various renewable energy sources, fuel cell is gaining more popularity due to their higher efficiency, cleanliness and cost-effective supply of power demanded by the consumers. This paper presents a comprehensive review of different fuel cell technologies with their working principle, advantages, disadvantages and suitability of applications for residential/grid-connected system, transportation, industries and commercial applications. Development of mathematical model of fuel cell required for simulation study is discussed. This paper also focuses on the necessity of a suitable power-conditioning unit required to interface the fuel cell system with standalone/grid applications.  相似文献   

11.
The current era in sustainable development is focused on the rapid integration of renewable energy sources driven by a wide range of socio-economic objectives. Due to the inherent property of time-varying weather conditions, the intermittent sources, that is, Solar PV and Wind Energy, are considered as variable energy resources. The uncertainty and variability problem of these sources has brought many complications to distributed network operators to operate and control the complex or multi-microgrids with limited fast-ramping resources in order to maintain the power system flexibility. It led many researchers to find an alternative strategy since the conventional approaches are no longer adequate to handle the economic implications of operational decision making. At first, the brief review of various deterministic and probabilistic approaches, stochastic programming and robust optimisation strategies to address the uncertainty of variable energy resources are discussed. Furthermore, in the energy management point of view, the optimal scheduling problem of distributed sources of the microgrid is considered, and a brief review of optimisation models, advanced control strategies and demand response strategies to maximise economic benefits of microgrids are also elaborately presented. Finally, the multiagent-based distributed and decentralised control strategies for seamless integration of distributed generator units are reviewed under various configurations of the power grid along with communication network topologies.  相似文献   

12.
This study aims to develop a database of low energy techniques for homes around the world, for use in systematically evaluating the low energy home in each region, where climate, culture and policy differ. First, a database was made for the purpose of the systemizing passive and active techniques. Data were input according to seven chapters and 155 items, and 66 homes in 17 nations have been recorded. Homes adopting super insulation, high airtightness and solar energy utilization are common in the each country. The thermal insulation performance of wall and window of the housing in Japan is somewhat inferior to that overseas. It was shown that exhaust heat recovery is rarely adopted in Japan and that the underground thermal energy utilization was seen in less than 10% of recorded homes. Second, recorded homes were categorized according to characteristics of adopted strategies, and the reduction rate of purchased energy versus the purchased energy for a typical home was calculated. This revealed the purchased energy reduction rate of homes with both solar heat utilization and photovoltaic power generation to be very high.  相似文献   

13.
The purpose of this paper is to analyze the costs for reducing CO2 emissions in the power-generating sectors in Croatia, the European part of Russia, Macedonia, Serbia and the Ukraine in 2020 by using a linear programming model. The model takes into account the impact of technology learning and is based on the underlying assumptions of the so-called RAINS model frequently used to assess the potential and the costs for reducing air pollution in Europe. The results based on an exogenously given 15 percent reduction target for CO2 emissions show that the marginal cost for switching from a carbon-intense fuel to either a low-carbon or to a renewable energy source differs significantly among the countries. The marginal costs range from 4 to 90€ per ton CO2, and are mainly due to country differences in the availability of renewables, existing technologies and costs. The results also indicate that although it is clear that the Eastern European countries are not homogeneous in terms of CO2 abatement potential and costs, no general conclusions can be made of the region. This may have important implications for future JI/CDM activities. For instance, risk factors such as policy uncertainty and institutional obstacles may become crucial in determining the future allocation of JI/CDM projects across the region.  相似文献   

14.
Energy policies in many countries push for an increase in the generation of wind and solar power. Along these developments, the balance between supply and demand becomes more challenging as the generation of wind and solar power is volatile, and flexibility of supply and demand becomes valuable. As a consequence, companies in the electric power sector develop new business models that create flexibility through activities of timing supply and demand. Based on an extensive qualitative analysis of interviews and industry research in the energy industry, the paper at hand explores the role of timing-based business models in the power sector and sheds light on the mechanisms of flexibility creation through timing. In particular we distill four ideal-type business models of flexibility creation with timing and reveal how they can be classified along two dimensions, namely costs of multiplicity and intervention costs. We put forward that these business models offer ‘coupled services’, combining resource-centered and service-centered perspectives. This complementary character has important implications for energy policy.  相似文献   

15.
Electrical energy is one of the key components for the development and sustainability of any nation. India is a developing country and blessed with a huge amount of renewable energy resources still there are various remote areas where the grid supply is rarely available. As electrical energy is the basic requirement, therefore it must be taken up on priority to exploit the available renewable energy resources integrated with storage devices like fuel cells and batteries for power generation and help the planners in providing the energy-efficient and alternative solution. This solution will not only meet electricity demand but also helps reduce greenhouse gas emissions as a result the efficient, sustainable and eco-friendly solution can be achieved which would contribute a lot to the smart grid environment. In this paper, a modified grey wolf optimizer approach is utilized to develop a hybrid microgrid based on available renewable energy resources considering modern power grid interactions. The proposed approach would be able to provide a robust and efficient microgrid that utilizes solar photovoltaic technology and wind energy conversion system. This approach integrates renewable resources with the meta-heuristic optimization algorithm for optimal dispatch of energy in grid-connected hybrid microgrid system. The proposed approach is mainly aimed to provide the optimal sizing of renewable energy-based microgrids based on the load profile according to time of use. To validate the proposed approach, a comparative study is also conducted through a case study and shows a significant savings of 30.88% and 49.99% of the rolling cost in comparison with fuzzy logic and mixed integer linear programming-based energy management system respectively.  相似文献   

16.
The main purpose of this work is to assess the unavoidable increase in the cost of electricity of a generation system by the integration of the necessary renewable energy sources for power generation (RES-E) technologies in order for the European Union Member States to achieve their national RES energy target. The optimization model developed uses a genetic algorithm (GA) technique for the calculation of both the additional cost of electricity due to the penetration of RES-E technologies as well as the required RES-E levy in the electricity bills in order to fund this RES-E penetration. Also, the procedure enables the estimation of the optimum feed-in-tariff to be offered to future RES-E systems. Also, the overall cost increase in the electricity sector for the promotion of RES-E technologies, for the period 2010–2020, is analyzed taking into account factors, such as, the fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc. The overall results indicate that in the case of RES-E investments with internal rate of return (IRR) of 10% the cost of integration is higher, compared to RES-E investments with no profit, (i.e., IRR at 0%) by 0.3–0.5 €c/kWh (in real prices), depending on the RES-E penetration level.  相似文献   

17.
A user-on-demand power source based on renewable energy requires storage devices to balance power sources and power demands because of the fluctuation of power sources like solar cells or wind power generators. The role of the control system is defined as two different tasks: allowing a power-flow imbalance between demand and power sources; and balancing the power flow inside the system. Since this control is complicated, many control methods using precise calculation of the power balance have been proposed. An analogue-like distributed control method - named “modified DC-bus signalling” - for controlling a renewable-energy power source without the need for a central processing unit is proposed. The modified DC bus signalling method discussed in this paper is composed of a DC-bus line connected with a battery, water-splitting electrochemical cell, and a fuel cell for hydrogen-energy storage via converters. The proposed control method was demonstrated to be able to control step-like and random changes in input and output power. The battery compensated high-frequency fluctuations in power demand, and the electrochemical cell and fuel cell handled the remaining low-frequency ones, which were matched to their response speeds.  相似文献   

18.
The expansion of electricity generation from renewable sources in Germany is promoted by the Erneuerbare-Energien-Gesetz (EEG), which was last amended in June 2008. In a review of the EEG the political parameters, the progress achieved, and the impacts of the Act itself are set out. This Progress Report addresses cross-sectoral aspects, notably CO2 emissions reduction, job creation, investment and turnover in the renewables industry, and that industry's prospects for the future. Trends in the individual renewables sectors are described and policy recommendations formulated, as appropriate, on this basis. The policy recommendations have been incorporated into the new EEG from 6 June 2008.  相似文献   

19.
There is clear consensus on the value of diversity as applied to energy systems, with the concept being a central reference for governments, industry and civil society organizations. Given its importance in policy debates, we have sought to explore the specification and measurement of diversity. We show that although conceptualisation of diversity has developed over recent years, along with increasingly elegant mathematical representations, the concept is, at core, subjective and irreducibly context specific. Subjectivity derives from determination of boundaries and the placement of objects into categories, the acts that make assessment of diversity possible. We illustrate this point with an empirical analysis of the diversity of renewable energy generation in the UK over the past century. By applying a range of different indices and classifications to this dataset, we demonstrate that the ‘diversity story’ told is different in each case. As such we argue that the analysis of diversity must be produced and consumed critically. Attempts to expand, manage, measure or comment upon the diversity of a system, be it an ecosystem, an organization, an economy, or an energy portfolio, demand rigor, reflexivity and, most importantly, transparency.  相似文献   

20.
H. Lund   《Renewable Energy》2006,31(4):503-515
This article presents the results of analyses of large-scale integration of wind power, photo voltaic (PV) and wave power into a Danish reference energy system. The possibility of integrating Renewable Energy Sources (RES) into the electricity supply is expressed in terms of the ability to avoid excess electricity production. The different sources are analysed in the range of an electricity production from 0 to 100% of the electricity demand. The excess production is found from detailed energy system analyses on the computer model EnergyPLAN. The analyses have taken into account that certain ancillary services are needed in order to secure the electricity supply system.The idea is to benefit from the different patterns in the fluctuations of different renewable sources. And the purpose is to identify optimal mixtures from a technical point of view. The optimal mixture seems to be when onshore wind power produces approximately 50% of the total electricity production from RES. Meanwhile, the mixture between PV and wave power seems to depend on the total amount of electricity production from RES. When the total RES input is below 20% of demand, PV should cover 40% and wave power only 10%. When the total input is above 80% of demand, PV should cover 20% and wave power 30%. Meanwhile the combination of different sources is alone far from a solution to large-scale integration of fluctuating resources. This measure is to be seen in combination with other measures such as investment in flexible energy supply and demand systems and the integration of the transport sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号