首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main purpose of this work is to assess the unavoidable increase in the cost of electricity of a generation system by the integration of the necessary renewable energy sources for power generation (RES-E) technologies in order for the European Union Member States to achieve their national RES energy target. The optimization model developed uses a genetic algorithm (GA) technique for the calculation of both the additional cost of electricity due to the penetration of RES-E technologies as well as the required RES-E levy in the electricity bills in order to fund this RES-E penetration. Also, the procedure enables the estimation of the optimum feed-in-tariff to be offered to future RES-E systems. Also, the overall cost increase in the electricity sector for the promotion of RES-E technologies, for the period 2010–2020, is analyzed taking into account factors, such as, the fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc. The overall results indicate that in the case of RES-E investments with internal rate of return (IRR) of 10% the cost of integration is higher, compared to RES-E investments with no profit, (i.e., IRR at 0%) by 0.3–0.5 €c/kWh (in real prices), depending on the RES-E penetration level.  相似文献   

2.
Nowadays, optimization of solar systems is used to reduce system total cost, increased life cycle savings and improving thermal efficiency. It is very demanding for optimal utilization of solar resources to meet the energy demands. Various optimization techniques either deterministic or stochastic are implemented to achieve this objective. The stochastic techniques generate better results as compared to deterministic in large search space in low computation time. The optimal set of design and operating parameters are means to produce maximum system performance. This study includes review of various stochastic optimization techniques implemented in solar energy systems for performance enhancement. Based on the results given by various investigators, an attempt has been made to compare the stochastic optimization techniques in terms of providing maximum system performance of different solar systems.  相似文献   

3.
The solid oxide fuel cell (SOFC)/lithium battery hybrid energy structure uses lithium batteries as the energy buffer unit to ensure that the SOFC can operate safely and stably when the load power increases suddenly. For the SOFC/lithium battery hybrid power generation system, a real-time energy management strategy based on power prediction is discussed, and an in-depth summary is made from system construction, power prediction, energy distribution, and power tracking. In the hybrid power generation system, the SOFC system and the lithium battery influence each other. Research the appropriate energy management strategies and realize real-time energy distribution and tracking of hybrid power generation systems in order to improve system performance and economy. This has become a key issue in the current SOFC hybrid power generation system research field.  相似文献   

4.
Hydrogen-based energy solutions are among the alternative energy choices due to their clean emissions and high efficiency. H2 is a highly convenient energy source, particularly if derived from sustainable feedstock. With the renewed emphasis on biodiesel production globally, large quantities of glycerol are expected to be produced as a major by-product. Reforming of this glycerol can provide a sustainable and H2-rich feedstock. The study reveals that 7H2 molecules were produced/molecule of glycerol in GSR, which is much higher than the commercially available SRM process. This also endorses the concept of circular economy and the 3Rs (Reuse, Reduce, and Recycle) by utilization of a by-product. This review highlights the recent advancements in different types of glycerol reforming technologies for H2 production. The highly endothermic reaction and the coking of Ni-based catalysts are still the main limitations in its commercialization. It has been found that among different glycerol reforming techniques, the GSR is the finest with the least drawbacks. Hence, corresponding solutions to overcome these obstacles are deliberated.  相似文献   

5.
The demand of electric energy is increasing globally, and the fact remains that the major share of this energy is still being produced from the traditional generation technologies. However, the recent trends, for obvious reasons of environmental concerns, are indicating a paradigm shift towards distributed generation (DG) incorporating renewable energy resources (RERs). But there are associated challenges with high penetration of RERs as these resources are unpredictable and stochastic in nature, and as a result, it becomes difficult to provide immediate response to demand variations. This is where energy storage systems (ESSs) come to the rescue, and they not only can compensate the stochastic nature and sudden deficiencies of RERs but can also enhance the grid stability, reliability, and efficiency by providing services in power quality, bridging power, and energy management. This paper provides an extensive review of different ESSs, which have been in use and also the ones that are currently in developing stage, describing their working principles and giving a comparative analysis of important features and technical as well as economic characteristics. The wide range of storage technologies, with each ESS being different in terms of the scale of power, response time, energy/power density, discharge duration, and cost coupled with the complex characteristics matrices, makes it difficult to select a particular ESS for a specific application. The comparative analysis presented in this paper helps in this regard and provides a clear picture of the suitability of ESSs for different power system applications, categorized appropriately. The paper also brings out the associated challenges and suggests the future research directions.  相似文献   

6.
J.K. Kaldellis  D. Zafirakis 《Energy》2007,32(12):2295-2305
The high wind and solar potential along with the extremely high electricity production cost met in the majority of Greek Aegean islands comprising autonomous electrical networks, imply the urgency for new renewable energy sources (RES) investments. To by-pass the electrical grid stability constraints arising from an extensive RES utilization, the adaptation of an appropriate energy storage system (ESS) is essential. In the present analysis, the cost effect of introducing selected storage technologies in a large variety of autonomous electrical grids so as to ensure higher levels of RES penetration, in particular wind and solar, is examined in detail. A systematic parametrical analysis concerning the effect of the ESSs’ main parameters on the economic behavior of the entire installation is also included. According to the results obtained, a properly sized RES-based electricity generation station in collaboration with the appropriate energy storage equipment is a promising solution for the energy demand problems of numerous autonomous electrical networks existing worldwide, at the same time suggesting a clean energy generation alternative and contributing to the diminution of the important environmental problems resulting from the operation of thermal power stations.  相似文献   

7.
8.
The concept of intelligent electricity grids, which primarily involves the integration of new information and communication technologies with power transmission lines and distribution cables, is being actively explored in the European Union and the United States. Both developments share common technological developmental goals but also differ distinctly towards the role of distributed generation for their future electrical energy security. This paper looks at options that could find relevance to New Zealand (NZ), in the context of its aspiration of achieving 90% renewable energy electricity generation portfolio by 2025. It also identifies developments in technical standardization and industry investments that facilitate a pathway towards an intelligent or smart grid development for NZ. Some areas where policy can support research in NZ being a “fast adapter” to future grid development are also listed.This paper will help policy makers quickly review developments surrounding SmartGrid and also identify its potential to support NZ Energy Strategy in the electricity infrastructure. This paper will also help researchers and power system stakeholders for identifying international standardization, projects and potential partners in the area of future grid technologies.  相似文献   

9.
Wind is a variable and uncontrollable source of power with a low capacity factor. Using energy storage facilities with a non-firm connection strategy is the key to maximum integration of distant wind farms into a transmission-constrained power system. In this paper, we explore the application of energy storage in optimal allocation of wind capacity to a power system from distant wind sites. Energy storage decreases transmission connection requirements, smoothes the wind farm output and decreases the wind energy curtailments in a non-firm wind capacity allocation strategy. Specifically, we examine the use of compressed air energy storage (CAES) technology to supplement wind farms and downsize the transmission connection requirements. Benders decomposition approach is applied to decompose this computationally challenging and large-scale mixed-integer linear programming (MILP) into smaller problems. The simulation results show that using energy storage systems can decrease the variation of wind farms output as well as the total cost, including investment and operation costs, and increase the wind energy penetration into the power system.  相似文献   

10.
The Well-to-Meter (WTM) analysis module in the Tsinghua-CA3EM model has been used to examine the primary fossil energy consumption (PFEC) and greenhouse gas (GHG) emissions for electricity generation and supply in China. The results show that (1) the WTM PFEC and GHG emission intensities for the 2007 Chinese electricity mix are 3.247 MJ/MJ and 297.688 g carbon dioxide of equivalent (gCO2,e)/MJ, respectively; (2) power generation is the main contributing sub-stage; (3) the coal-power pathway is the only major contributor of PFEC (96.23%) and GHG emissions (97.08%) in the 2007 mix; and (4) GHG emissions intensity in 2020 will be reduced to 220.470 gCO2,e/MJ with the development of nuclear and renewable energy and to 169.014 gCO2,e/MJ if carbon dioxide capture and storage (CCS) technology is employed. It is concluded that (1) the current high levels of PFEC and GHG emission for electricity in China are largely due to the dominant role of coal in the power-generation sector and the relatively low efficiencies during all the sub-stages from resource extraction to final energy consumption and (2) the development of nuclear and renewable energy as well as low carbon technologies such as CCS can significantly reduce GHG emissions from electricity.  相似文献   

11.
储能技术是突破可再生能源大规模开发利用瓶颈的关键技术,是智能电网的必要组成部分.在储能市场商业化雏形阶段,系统性的比较分析各类储能技术的性能特点,为未来市场发展提供筛选技术路线的框架基础至关重要.本文阐述了储能技术在可再生能源发电和智能电网中的作用,对物理储能(抽水蓄能,压缩空气储能,飞轮储能),电化学储能(二次电池,液流电池),其它化学储能(氢能,合成天然气)等储能技术进行了系统的比较与分析,最后提出储能技术的发展趋势.  相似文献   

12.
Control of tethered airfoils is investigated, in order to devise a new class of wind generators to overcome the main limitations of the present wind technology, based on wind mills. A model from the literature is used to simulate the dynamic of a kite whose lines are suitably pulled by a control unit. Energy is generated by a cycle composed of two phases, indicated as the traction and the drag one. The kite control unit is placed on the arm of a vertical axis rotor, connected to an electric drive able to act as a generator when the kite pulls the rotor and as a motor in dragging the kite against the wind. Control is obtained by “fast” implementation of Nonlinear Model Predictive Control (NMPC). In the traction phase the control is designed such that the kite pulls the rotor arm, maximizing the amount of generated energy. When energy cannot be generated anymore, the control enters the drag phase and the kite is driven to a region where the energy spent to drag the rotor is a small fraction of the energy generated in the traction phase, until a new traction phase is undertaken. Simulation results are presented, showing encouraging performances.  相似文献   

13.
In this study, we aim to develop a superstructure-based optimization model using mixed integer linear programming (MILP) to determine the optimal combination and sizing for a hybrid renewable energy system to be used in an isolated area. The developed model has a three-layered energy structure to reflect the current reality in which energy production and consumption sites are generally separate. A variety of economic factors, including distance between facilities and an installation area, are considered for a more accurate estimation of the total annualized cost. Two types of optimization models, i.e., with and without a battery, are proposed to evaluate the economic and technical effects of a storage device to resolve operation issues caused by intermittent resources. An application case study on Jeju Island, Korea, confirms that the proposed model is suitable for decision making at the planning stage of a renewable energy system.  相似文献   

14.
Renewable energy resources have historically played a small role for electricity generation in the US. However, concerns such as security of energy supply, limitations and price fluctuations of fossil fuels, and threats of climate changes have encouraged US policy makers to think and debate about diversification strategy in the energy supply and promotion of renewables. The current paper discusses the role of renewable portfolio in the US energy action plan during 2010–2030. A system dynamics model is constructed to evaluate different costs of renewable energy utilization by 2030. Results show that while renewables will create a market with near 10 billion $ worth (in the costs level) in 2030, the total value of renewable energy promotion and utilization in the US will be more than 170 billion $(in the costs level) during 2010–2030.  相似文献   

15.
This paper describes dynamic modeling and simulation results of a small wind–fuel cell hybrid energy system. The system consists of a 400 W wind turbine, a proton exchange membrane fuel cell (PEMFC), ultracapacitors, an electrolyzer, and a power converter. The output fluctuation of the wind turbine due to wind speed variation is reduced using a fuel cell stack. The load is supplied from the wind turbine with a fuel cell working in parallel. Excess wind energy when available is converted to hydrogen using an electrolyzer for later use in the fuel cell. Ultracapacitors and a power converter unit are proposed to minimize voltage fluctuations in the system and generate AC voltage. Dynamic modeling of various components of this small isolated system is presented. Dynamic aspects of temperature variation and double layer capacitance of the fuel cell are also included. PID type controllers are used to control the fuel cell system. SIMULINKTM is used for the simulation of this highly nonlinear hybrid energy system. System dynamics are studied to determine the voltage variation throughout the system. Transient responses of the system to step changes in the load current and wind speed in a number of possible situations are presented. Analysis of simulation results and limitations of the wind–fuel cell hybrid energy system are discussed. The voltage variation at the output was found to be within the acceptable range. The proposed system does not need conventional battery storage. It may be used for off-grid power generation in remote communities.  相似文献   

16.
Carbon capture and storage (CCS) facilities coupled to power plants provide a climate change mitigation strategy that potentially permits the continued use of fossil fuels whilst reducing the carbon dioxide (CO2) emissions. This process involves three basic stages: capture and compression of CO2 from power stations, transport of CO2, and storage away from the atmosphere for hundreds to thousands of years. Potential routes for the capture, transport and storage of CO2 from United Kingdom (UK) power plants are examined. Six indicative options are evaluated, based on ‘Pulverised Coal’, ‘Natural Gas Combined Cycle’, and ‘Integrated (coal) Gasification Combined Cycle’ power stations. Chemical and physical CO2 absorption capture techniques are employed with realistic transport possibilities to ‘Enhanced Oil Recovery’ sites or depleted gas fields in the North Sea. The selected options are quantitatively assessed against well-established economic and energy-related criteria. Results show that CO2 capture can reduce emissions by over 90%. However, this will reduce the efficiency of the power plants concerned, incurring energy penalties between 14 and 30% compared to reference plants without capture. Costs of capture, transport and storage are concatenated to show that the whole CCS chain ‘cost of electricity’ (COE) rises by 27-142% depending on the option adopted. This is a significant cost increase, although calculations show that the average ‘cost of CO2 captured’ is £15/tCO2 in 2005 prices [the current base year for official UK producer price indices]. If potential governmental carbon penalties were introduced at this level, then the COE would equate to the same as the reference plant, and make CCS a viable option to help mitigate large-scale climate change.  相似文献   

17.
《能源学会志》2020,93(6):2293-2313
The access to electricity has increased worldwide, growing from 60 million additional consumers per year in 2000–2012 to 100 million per year in 2012–2016. Despite this growth, approximately 675 million people will still lack access to electricity in 2030, indicating that electricity demand will continue to increase. Unfortunately, traditional large fossil power technologies based on coal, oil and natural gas lead to a major concern in tackling worldwide carbon dioxide emissions, and nuclear power remains unpopular due to public safety concerns. Distributed power generation utilizing CO2-neutral sources, such as gasification of biomass and municipal solid wastes (MSW), can play an important role in meeting the world energy demand in a sustainable way. This review focuses on the recent technology developments on seven power generation technologies (i.e. internal combustion engine, gas turbine, micro gas turbine, steam turbine, Stirling engine, organic rankine cycle generator, and fuel cell) suitable for distributed power applications with capability of independent operation using syngas derived from gasification of biomass and MSW. Technology selection guidelines is discussed based on criteria, including hardware modification required, size inflexibility, sensitivity to syngas contaminants, operational uncertainty, efficiency, lifetime, fast ramp up/down capability, controls and capital cost. Major challenges facing further development and commercialization of these power generation technologies are discussed.  相似文献   

18.
This paper includes a review of the different computer tools that can be used to analyse the integration of renewable energy. Initially 68 tools were considered, but 37 were included in the final analysis which was carried out in collaboration with the tool developers or recommended points of contact. The results in this paper provide the information necessary to identify a suitable energy tool for analysing the integration of renewable energy into various energy-systems under different objectives. It is evident from this paper that there is no energy tool that addresses all issues related to integrating renewable energy, but instead the ‘ideal’ energy tool is highly dependent on the specific objectives that must be fulfilled. The typical applications for the 37 tools reviewed (from analysing single-building systems to national energy-systems), combined with numerous other factors such as the energy-sectors considered, technologies accounted for, time parameters used, tool availability, and previous studies, will alter the perception of the ‘ideal’ energy tool. In conclusion, this paper provides the information necessary to direct the decision-maker towards a suitable energy tool for an analysis that must be completed.  相似文献   

19.
The main driving forces behind the efforts to utilize various sources of renewable energy, energy efficiency, and reducing energy waste are the increasing level of greenhouse gasses and the climb in fuel prices. Energy storage is now gaining continuously increasing importance. It develops new sources of energy. The storage of energy in a suitable form, which can be converted into the required form, is a high challenge. Energy storage not only reduces the mismatch between supply and demand but it also improves the performance and reliability of energy system and contributes toward conserving energy. In this work, some research works carried out by the author and associates over the last 10 years are reviewed along with some other relevant works. These articles cover different systems involving energy sustainability, energy efficiency, green energy, and power augmentation related to compressed air energy storage, with and without humidification, plus with and without cooling (adiabatic). Comparison of the potential methods shows that compressed air storage with humidification is superior to other methods in energy ratio and primary energy efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Wind power generation and its impacts on electricity prices has strongly increased in the EU. Therefore, appropriate mark-to-market evaluation of new investments in wind power and energy storage plants should consider the fluctuant generation of wind power and uncertain electricity prices, which are affected by wind power feed-in (WPF). To gain the input data for WPF and electricity prices, simulation models, such as econometric models, can serve as a data basis.This paper describes a combined modeling approach for the simulation of WPF series and electricity prices considering the impacts of WPF on prices based on an autoregressive approach. Thereby WPF series are firstly simulated for each hour of the year and integrated in the electricity price model to generate an hourly resolved price series for a year. The model results demonstrate that the WPF model delivers satisfying WPF series and that the extended electricity price model considering WPF leads to a significant improvement of the electricity price simulation compared to a model version without WPF effects. As the simulated series of WPF and electricity prices also contain the correlation between both series, market evaluation of wind power technologies can be accurately done based on these series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号