首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new kind of oxidation protection coating of Si-MoSi2 was developed for three dimensional carbon fiber reinforced silicon carbide composites which could be serviced upto 1550 °C. The overall oxidation behavior could be divided into three stages: (i) 500 °C < T < 800 °C, the oxidation mechanism was considered to be controlled by the chemical reaction between carbon and oxygen; (ii) 800 °C < T < 1100 °C, the oxidation of the composite was controlled by the diffusion of oxygen through the micro-cracks, and; (iii) T > 1100 °C, the oxidation of SiC became significant and was controlled by oxygen diffusion through the SiC layer. Microstructural analysis revealed that the oxidation protection coating had a three-layer structure: the out layer is oxidation layer of silica glass, the media layer is Si + MoSi2 layer, and the inside layer is SiC layer. The coated C/SiC composites exhibited excellent oxidation resistance and thermal shock resistance. After the composites annealed at 1550 °C for 50 h in air and 1550 °C 100 °C thermal shock for 50 times, the flexural strength was maintained by 85% and 80% respectively. The relationship between oxidation weight change and flexural strength revealed the criteria for protection coating was that the maximum point of oxidation weight gain was the failure starting point for oxidation protection coating.  相似文献   

2.
Growing carbon nanotubes (CNTs) on the surface of fibers has the potential to modify fiber–matrix interfacial adhesion, enhance the composite delamination resistance, and possibly improve its toughness and any matrix-dominated elastic property as well. In the present work aligned CNTs were grown upon ceramic fibers (silica and alumina) by chemical vapor deposition (CVD) at temperatures of 650 °C and 750 °C. Continuously-monitored single fiber composite (SFC) fragmentation tests were performed on pristine as well as on CNT-grown fibers embedded in epoxy. The critical fragment length, fiber tensile strength at critical length, and interfacial shear strength were evaluated. Significant increases (up to 50%) are observed in the fiber tensile strength and in the interfacial adhesion (which was sometimes doubled) with all fiber types upon which CNTs are CVD-grown at 750 °C. We discuss the likely sources of these improvements as well as their implications.  相似文献   

3.
The influence of reaction temperature on the preparation of SiC coating on carbon fibers by the reaction of silicon monoxide with the deposited pyrolytic carbon (PyC) layer has been discussed. With rising reaction temperature, the thickness of SiC layer increases and the SiC grain is coarsening. The apparent activation energy for the synthesis of SiC layer is about 103.3 kJ/mol. The oxidation resistance of carbon fiber can be improved by the SiC/PyC layers significantly. The initial oxidation temperature of the SiC/PyC coated carbon fiber is about 300°C higher than that of the uncoated carbon fiber. The oxidation of the SiC/PyC coated carbon fiber is owing to the diffusion of oxygen through the cracks generated by the mismatch of thermal expansion.  相似文献   

4.
To further improve the oxidation resistance of coating for carbon/carbon (C/C) composites, a multi-layer CVD-SiC/MoSi2–CrSi2–Si/B-modified SiC coating was prepared on the surface of C/C composites by pack cementation and chemical vapour deposition method, respectively. The microstructures, oxidation and thermal shock resistance of the coating were studied. The influence of B content in pack powder on the microstructure and oxidation resistance of B-modified SiC coating was also investigated. The results show that the B-modified SiC coating prepared with 10 wt.% B exhibited the best oxidation protection ability for C/C composites at 1173 K. The multi-layer coatings could protect the C/C composites at 1173 K for 30 h and 1873 K for 200 h, and endure 30 thermal cycles between 1873 K and room temperatures. The oxidation resistance and thermal shock resistance is mainly attributed to their dense structure and self-sealing property.  相似文献   

5.
Boron nitride (BN) coating on the surface of carbon nanotubes (CNTs) was synthesized by the direct reaction of NaBH4 and NH4Cl in the temperature range of 500–600 °C. X-ray diffraction, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) confirm the formation of BN coating. It is revealed that the BN coating follows the shape of CNTS without damaging the surface of CNTs, and the elements B and N distribute homogenously along the whole CNTs without chemical bonds between carbon and BN layers. Besides, the oxidation resistance of the CNTs improved a lot after being coated with BN.  相似文献   

6.
Ablation property of three dimensional carbon fiber reinforced zirconium carbide composite (3D C/ZrC composite) was determined using oxyacetylene torch test with a heat flux of 4187 kW/m2 and flame temperature of over 3000 °C. C/ZrC composite exhibited an excellent configurational stability with a surface temperature of over 2000 °C during 60-300 s period, while 3D C/SiC composite was perforated at 55 s. After ablation for 300 s, the composite showed a mass loss rate of 0.006 g/s and a linear recession rate of 0.004 mm/s. The formation of zirconia melt on the surface of the C/ZrC composite contributed mainly the ablation property improvement. The C/ZrC composite after ablation showed four different layers due to the temperature and pressure gradients: the melting layer, the loose tree-coral-like ZrO2 layer, the undersurface oxidation layer, and the composite layer.  相似文献   

7.
采用水热电泳沉积法在SiC-C/C复合材料表面制备纳米碳化硅(SiCn)涂层. 采用XRD和SEM对涂层的晶相组成、表面和断面的微观结构进行了表征. 主要研究了水热沉积温度对涂层的结构及高温抗氧化性能的影响, 并分析了涂层试样在1600℃的高温氧化气氛下失效行为. 结果表明:纳米碳化硅涂层主要由β-SiC组成. 涂层的致密程度和厚度随着水热沉积温度的升高而提高. 随着水热温度的提高, 涂层试样的抗氧化性能也有明显的提高. 在120℃水热沉积温度下制备的涂层试样可在空气气氛1500℃下有效保护C/C复合材料202h,而氧化失重仅为2.16×10-3g/cm2. 在1600℃下氧化64h后失重为3.7×10-3g/cm2. 其高温失效是由于长时间的氧化挥发后表面SiO2膜不能完全封填表面缺陷, 内涂层中产生了贯穿性的孔隙所致.  相似文献   

8.
为提高炭/炭(C/C)复合材料的高温抗氧化性能,采用料浆涂刷法首先在C/C复合材料表面制备了预炭层,然后以Si粉及石墨粉(Si粉与石墨粉的质量配比为:60~80:10~25)为原材料采用包埋法经高温热处理获得C/SiC内涂层,最后在涂有C/SiC内涂层的C/C复合材料表面采用包埋法制备Si-Mo-Cr外涂层。借助扫描电镜、X射线衍射、电子能谱等分析测试手段对涂层试样的微观结构进行了分析,研究了涂层C/C复合材料在1 873 K和1 973 K下的氧化行为。结果表明:由于涂层氧化过程中表面生成了SiO2和Cr2O3复合玻璃层,其在1 873 K温度下表现出优异的防氧化性能,可以有效保护C/C复合材料达135 h。当氧化温度提高至1 973 K并氧化30 h后,该复合涂层氧化过程玻璃层完整性被破坏,涂层失效。  相似文献   

9.
采用电沉积法与化学气相渗透(CVI)法将碳纳米管(CNTs)分别引入到碳纤维表面和SiC基体中,制得了不同物相电沉积CNTs的C/SiC复合材料(CNTs-C)/SiC和C/(CNTs-SiC)。研究了CNTs沉积物相对C/SiC复合材料力学性能的影响,分析了不同CNTs沉积物相的C/SiC复合材料的拉伸强度及断裂机制。结果表明:相较于未加CNTs的C/SiC复合材料,CNTs沉积到碳纤维表面的(CNTs-C)/SiC复合材料的拉伸强度提高了67.3%,断裂功提高了107.2%;而将CNTs引入到SiC基体中的C/(CNTs-SiC)复合材料的断裂功有所降低,拉伸强度也仅提高了6.9%,CNTs没有表现出明显的增强增韧效果;C/(CNTs-SiC)复合材料与传统的C/SiC复合材料有相似的断裂形貌特征,断裂拔出机制类似,主要为纤维增强增韧,CNTs的作用不明显。  相似文献   

10.
The oxidation behaviour of two- and three-dimensional C/SiC protected by a chemicalvapour-deposition (CVD) ceramic coating was studied. The elements used to achieve the surface protection were silicon, boron and carbon, preferably forming SiC, B or B4C. The best results were obtained with the trilayer coatings, that is with, SiC as the internal layer, boron or boron carbide, as the intermediate layer and an external SiC layer. To get a good protection in a large temperature range, from 450 to 1500 °C, the total thickness of the trilayers must be higher than 160 m and the intermediate layer thickness must be higher than 5 m. Morphological characterization of oxidized samples has shown that, for intermediate oxidation temperatures, a glass was produced in the cracks. When the oxidation temperature was equal to or higher than 1300 °C, sealing of the cracks was rarely observed, but the oxidation resistance remained satisfactory.  相似文献   

11.
Electrically percolative composites of thermoplastic elastomers (TPE) filled with different concentrations of carbon nanotubes (CNT), carbon black (CB) and (CNT–CB) hybrid fillers were fabricated by melt blending. The effects of filler type and composition on the electrical properties of the percolative TPE composites were studied. Percolation threshold for CB-, CNT- and (CNT–CB)-based composites was found to be 0.06, 0.07 and 0.07 volume fraction respectively. Compared to CB-based composites and earlier reported results, CNT- and (CNT–CB)-based ones revealed an unexpectedly high percolation threshold, which otherwise considered an unwelcome phenomenon, lead to distinct and rare percolation characteristics of CNT filled percolative composites like per-percolation conductivity and a relatively steep percolation curves. CB-based composites showed a comparatively sharp insulator–conductor transition curve complementing the percolation characteristics CNT- and (CNT–CB)-based composites. Percolation threshold conductivity of the fillers was in the order of CB > CNT > (CNT–CB), while maximum attained conductivities followed the order of CNT > (CNT–CB) > CB. Conductivity order of fillers not only denied much reported synergic effect in (CNT–CB) filler but also highlighted the effect of percolation characteristics on the outcome of conductivity values. Results obtained were of theoretical as well as practical importance and were explained in the context of filler morphology and different dispersion characteristics of the carbon based fillers.  相似文献   

12.
In order to improve the anti-oxidation property of carbon/carbon (C/C) composites, a novel SiC-Si-ZrSiO4 multiphase oxidation protective coating was produced on the surface of C/SiC coated carbon/carbon compo ites by a pack cementation technique. The phase composition and microstructure of the as-prepared coatings were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy) and EDS (energy dispersive spectroscopy). Oxidation behavior of the multiphase coated C/C composites was also investigated. It showed that the as-prepared coating characterized by excellent oxidation resistance and thermal shock re- sistance could effectively protect C/C composites from oxidation at 1773 K for 57 h in air and endure the thermal cycle between 1773 K and room temperature for 12 times, whereas the corresponding weight loss is only 1.47%. The excellent oxidation protective ability of the SiC-Si-ZrSiO4 coating could be attributed to the C/SiC gradient inner layer and the multiphase microstructure of the coating.  相似文献   

13.
Protective coatings (Al–O–N and Al–O–B–N) on Si–O–C fibers (Tyranno ZMI) were applied in order to enhance oxidation resistance under severe thermo-mechanical conditions in the 400–600 °C temperature range. The coating process consisted in three steps: (i) the transformation of the Si–O–C fiber surface into microporous carbon; (ii) the impregnation of these carbon microporous layers by an aluminium trichloride (AlCl3) solution and then, (iii) a final heat treatment under ammonia. Processing parameters were studied in order to select the best conditions. Using these conditions, obtained results have shown that coatings were present around each fiber, with a controlled thickness, and that the mechanical properties of the fibers were preserved. Although, these coatings did not entirely stop the oxygen ingress, it has been shown that they strongly reduced the oxidation of the fiber.  相似文献   

14.
We obtained SiC coating layers on a graphite substrate using hexachlorodisilane (Si2Cl6, boiling point 144° C) as a silicon source and propane as a carbon source. We examined the deposition conditions, contents of carbon, silicon and chlorine in the deposits, and the microhardness. Mirror-like amorphous silicon layers were deposited in the reaction temperature range 500 to 630° C. well-formed silicon carbide layers with good adherency to the substrate were obtained above 850° C. The lowest deposition temperature of SiC was estimated to be 750 to 800° C. The Vickers microhardness of the SiC layer was about 3800 kg mm–2 at room temperature and 2150 kg mm–2 at 1000° C.  相似文献   

15.
Transparent and conductive carbon nanotubes (CNTs)/polyurethane-urea (PUU) composite films were prepared by solvent evaporation-induced self-assembly (EISA). Pristine CNTs were treated with acids (H2SO4/HNO3 = 3:1, v:v), acylated with thionyl chloride, and purified after filtration. These acylated CNTs (0.05 wt.% in dimethylformamide, DMF) were deposited onto the 3-aminopropyl triethoxysilane (APTES)-modified glass substrate by DMF EISA at 100 °C with the withdrawal rate of 3 cm/h. The CNT layers of 200–400 nm thicknesses were transferred to the PUU films by solution casting or resin transfer molding (RTM) at ambient temperature. Optical transmittances of the composite films were 60–75% at 550 nm wavelength and their sheet resistances were 5.2 × 100–2.4 × 103 kΩ/square, and which varied significantly with type of CNTs and the transferring methods of CNT layers.  相似文献   

16.
采用包埋法和低压化学气相沉积(CVD)法在碳/碳(C/C)复合材料表面依次制备了Ta2O5-TaC内涂层和SiC外涂层,用X射线衍射分析(XRD)、扫描电镜(SEM)及电子能谱(EDS)对涂层的相组成、微观形貌和元素组成进行了分析,研究了涂覆涂层后C/C复合材料在1 500℃静态空气中的防氧化性能及在氧-乙炔烧蚀中的抗烧蚀性能。结果表明:采用两步法制得的Ta2O5-TaC/SiC复合涂层结构致密,该复合涂层有效提高了C/C复合材料的抗氧化和抗烧蚀性能;Ta2O5-TaC/SiC复合涂层在1 500℃静态空气环境下可对C/C复合材料有效保护100 h以上;涂层试样在氧乙炔烧蚀环境中烧蚀60 s表明涂层可将C/C复合材料的线烧蚀率降低47.07%,质量烧蚀率降低29.20%。  相似文献   

17.
Degradation behaviour of sputtered Co–Al coatings on Superni-718 substrate has been investigated. Cyclic high temperature oxidation tests were conducted on uncoated and coated samples at peak temperatures of 900 °C for up to 100 thermal cycles between the peak and room temperatures. The results showed that a dense scale formed on the coated samples during thermal cycling at the peak temperature of 900 °C. The external scale exhibited good spallation resistance during cyclic oxidation testing at both temperatures. The improvement in oxide scale spallation resistance is believed to be related to the fine-grained structure of the coating. Nanostructured Co–Al coatings on Superni-718 substrate were deposited by DC/RF magnetron sputtering. FE-SEM/EDS, AFM, and XRD were used to characterize the morphology and formation of different phases in the coatings, respectively. The Co–Al coating on superalloy substrate showed better performance of cyclic high temperature oxidation resistance due to its possession of β-CoAl phase as Al reservoir and the formation of Al2O3 and spinel phases such as CoCr2O4 and CoAl2O4 in scale. The oxidation results confirmed an improved oxidation resistance of the Co–Al coating on superalloy as compare to bare substrate in air at 900 °C temperature up to 100 cycles.  相似文献   

18.
C/SiC composites had been considered as structural material in complex and harsh environments, thermal stability was one of the key issues for C/SiC composites. This study aimed to investigate C/SiC composites in thermal cycling environment. SiC coating on carbon fibers via chemical vapor deposition at time from 0.5 h to 5 h was studied, and then the degradation behavior of coated C/SiC composites had been measured by thermal cycling tests. The results showed that the coating was continuous and uniform, with good surface adhesion. The interface of carbon fibers and SiC coating was partially destroyed during thermal shock tests. The degradation of mechanical properties was closely related to the evolution of the damage in the composites.  相似文献   

19.
预氧丝原位碳化无粘剂C/C复合材料同其它C/C复合材料一样同样存在抗氧化性能差这一致命弱点,采用防氧化涂层面也不能很好地解决涂层与基体间热膨胀所带来的裂纹问题。通过添加对C/C复合材料抗氧化有明显抑制作用和自合作用的陶瓷,讨论了添加剂对预氧丝原位碳化C/C复合材料抗氧化性的影响规律。  相似文献   

20.
In this research, Ni–P and Ni–P/nano-SiC coatings were applied on the X70 steel substrate successfully without any surfactant. Then, CO2 corrosion in the presence of acetic acid (HAc) was investigated using electrochemical techniques. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques were used for surface analyses of the coatings. The electrochemical behavior of corrosion was investigated using polarization test and electrochemical impedance spectroscopy (EIS). XRD pattern of Ni–P/nano-SiC coating was very similar to that of Ni–P coating. EDS results demonstrated the presence of SiC particles in the coating. SEM images confirmed the presence of SiC nano-particles with almost uniform distribution in the coating. The corrosion current density was less in the Ni–P and Ni–P/nano-SiC coated samples than uncoated X70 steel. Ni–P/nano-SiC coated sample had the most corrosion resistance because of less effective metallic area available for corrosive media. The overall protection mechanism of Ni–P and Ni–P/nano-SiC coatings was achieved by formation of a layer of adsorbed hypophosphite anions (H2PO2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号