首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The increasing energy demands along with the expected depletion of fossil fuels have promoted to search for alternative fuels that can be obtained from renewable energy resources. Biodiesel as a renewable energy resource has drawn the attention of many researchers and scientists because its immense potential to be part of a sustainable energy mix in near future.This report attempts to compile the findings on current global and Malaysian energy scenario, potential of biodiesel as a renewable energy source, biodiesel policies and standards, practicability of Jatropha curcas as a biodiesel source in Malaysia as well as impact of biodiesel from Jatropha curcas. Final part of this report also describes the development of biodiesel market in Malaysia.The paper found that Jatropha curcas is one of the cheapest biodiesel feedstock and it possesses the amicable fuel properties with higher oil contents compared to others. Being non edible oil seed feedstocks it will not affect food price and spur the food versus fuel dispute. Jatropha can be substituted significantly for oil imports. Jatropha biodiesel has potential to reduce GHG emission than diesel fuel and it can be used in diesel engine with similar performance of diesel fuel. Jatropha curcas has an immense contribution to develop rural livelihoods too. Finally biodiesel production from Jatropha is eco-friendly and offers many social and economical benefits for Malaysia and can play an increasingly significant role to fulfill the energy demand in Malaysia.  相似文献   

2.
Biodiesel either in neat form or as a mixture with diesel fuel is widely investigated to solve the twin problem of depletion of fossil fuels and environmental degradation. The main objective of the present study is to compare performance, emission and combustion characteristics of biodiesel derived from non edible Jatropha oil in a dual fuel diesel engine with base line results of diesel fuel. The performance parameters evaluated were: brake thermal efficiency, brake specific fuel consumption, power output. As a part of combustion study, in-cylinder pressure, rate of pressure rise and heat release rates were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen and smoke opacity with the different fuels were also measured and compared with base line results. The different properties of Jatropha oil after transestrification were within acceptable limits of standards as set by many countries. The brake thermal efficiency of Jatropha methyl ester and its blends with diesel were lower than diesel and brake specific energy consumption was found to be higher. However, HC, CO and CO2 and smoke were found to be lower with Jatropha biodiesel fuel. NOx emissions on Jatropha biodiesel and its blend were higher than Diesel. The results from the experiments suggest that biodiesel derived from non edible oil like Jatropha could be a good substitute to diesel fuel in diesel engine in the near future as far as decentralized energy production is concerned. In view of comparable engine performance and reduction in most of the engine emissions, it can be concluded and biodiesel derived from Jatropha and its blends could be used in a conventional diesel engine without any modification.  相似文献   

3.
As the fossil fuels are depleting day by day, there is a need to find out an alternative fuel to fulfill the energy demand of the world. Biodiesel is one of the best available resources that have come to the forefront recently. In this paper, a detailed review has been conducted to highlight different related aspects to biodiesel industry. These aspects include, biodiesel feedstocks, extraction and production methods, properties and qualities of biodiesel, problems and potential solutions of using vegetable oil, advantages and disadvantages of biodiesel, the economical viability and finally the future of biodiesel. The literature reviewed was selective and critical. Highly rated journals in scientific indexes were the preferred choice, although other non-indexed publications, such as Scientific Research and Essays or some internal reports from highly reputed organizations such as International Energy Agency (IEA), Energy Information Administration (EIA) and British Petroleum (BP) have also been cited. Based on the overview presented, it is clear that the search for beneficial biodiesel sources should focus on feedstocks that do not compete with food crops, do not lead to land-clearing and provide greenhouse-gas reductions. These feedstocks include non-edible oils such as Jatropha curcas and Calophyllum inophyllum, and more recently microalgae and genetically engineered plants such as poplar and switchgrass have emerged to be very promising feedstocks for biodiesel production.It has been found that feedstock alone represents more than 75% of the overall biodiesel production cost. Therefore, selecting the best feedstock is vital to ensure low production cost. It has also been found that the continuity in transesterification process is another choice to minimize the production cost. Biodiesel is currently not economically feasible, and more research and technological development are needed. Thus supporting policies are important to promote biodiesel research and make their prices competitive with other conventional sources of energy. Currently, biodiesel can be more effective if used as a complement to other energy sources.  相似文献   

4.
In the current scenario of depleting energy resources, increasing food insecurity and global warming, Jatropha has emerged as a promising energy crop for India. The aim of this study is to examine the life cycle energy balance for Jatropha biodiesel production and greenhouse gas emissions from post-energy use and end combustion of biodiesel, over a period of 5 years. It’s a case specific study for a small scale, high input Jatropha biodiesel system. Most of the existing studies have considered low input Jatropha biodiesel system and have used NEB (Net energy balance i.e. difference of energy output and energy input) and NER (Net energy ratio i.e. ratio of energy output to energy input) as indicators for estimating the viability of the systems. Although, many of them have shown these indicators to be positive, yet the values are very less. The results of this study, when compared with two previous studies of Jatropha, show that the values for these indicators can be increased to a much greater extent, if we use a high input Jatropha biodiesel system. Further, when compared to a study done on palm oil and Coconut oil, it was found even if the NEB and NER of biodiesel from Jatropha were lesser in comparison to those of Palm oil and Coconut oil, yet, when energy content of the co-products were also considered, Jatropha had the highest value for both the indicators in comparison to the rest two.  相似文献   

5.
To minimize use of biodiesels synthesized from edible oils like Palm due to raising food versus fuel issue, Palm biodiesel (PBD) was blended with biodiesels derived from tree borne non-edible oil seeds Jatropha, and Pongamia to examine the effect on cloud point (CP) and pour point (PP) of PBD. Dependence of CP and PP on esters of fatty acid composition was also examined. Good correlations between CP and palmitic acid methyl ester (PAME) and between PP and PAME were obtained. A correlation between CP and total unsaturated fatty acid methyl ester (X) was also obtained and correlation between PP and X was also determined. Using these four correlations, cloud and pour points of different biodiesel blends can be determined.  相似文献   

6.
Diesel engines have proved its utility in transport, agriculture and power sector. Environmental norms and scared fossil fuel have attracted the attention to switch the energy demand to alternative energy source. Oil derived from Jatropha curcas plant has been considered as a sustainable substitute to diesel fuel. However, use of straight vegetable oil has encountered problem due to its high viscosity. The aim of present work is to reduce the viscosity of oil by heating from exhaust gases before fed to the engine, the study of effects of FIT (fuel inlet temperature) on engine performance and emissions using a dual fuel engine test rig with an appropriately designed shell and tube heat exchanger (with exhaust bypass arrangement). Heat exchanger was operated in such a way that it could give desired FIT. Results show that BTE (brake thermal efficiency) of engine was lower and BSEC (brake specific energy consumption) was higher when the engine was fueled with Jatropha oil as compared to diesel fuel. Increase in fuel inlet temperature resulted in increase of BTE and reduction in BSEC. Emissions of NOx from Jatropha oil during the experimental range were lower than diesel fuel and it increases with increase in FIT. CO (carbon monoxide), HC (hydrocarbon), CO2 (carbon dioxide) emissions from Jatropha oil were found higher than diesel fuel. However, with increase in FIT, a downward trend was observed. Thus, by using heat exchanger preheated Jatropha oil can be a good substitute fuel for diesel engine in the near future. Optimal fuel inlet temperature was found to be 80 °C considering the BTE, BSEC and gaseous emissions.  相似文献   

7.
The increased demand for energy, climate change, and energy security concerns has driven the research interest for the development of alternative fuel from plant origin. Biodiesel derived from plant oils, which include edible and non-edible oil have gained interest for the last two decades as alternative for diesel around the world. Among these plant origin oils more than 95% of biodiesel production feedstocks come from edible oils, because they are readily available in many regions. The major advantage of these feedstocks is the properties of biodiesel produced from them are suitable to be used as diesel fuel substitute. But the consequence is the increase demand of the feedstock for food as well as fuel. A sustainable alternative fuel should be derived from renewable non-food biomass sources. The main objective of this review is to give an overview on the synthesis of biodiesel through esterification and transesterification using non-edible oil resources which are available in India, and available processes for synthesis of biodiesel (acid-, base-catalyzed transesterification reactions (homogeneous and heterogeneous), their importance, and which is the commercial process also discussed here.  相似文献   

8.
Jatropha curcas L. is chosen as an ideal biodiesel crop in China because its seed kernel has high oil content (43-61%) and it does not compete with food. Its oil is non-edible, and the trees can resist drought and grow on barren and marginal lands without using arable land. This article reviews the history of Jatropha, current development status and problems in its seeds, propagation, plantation management, oil extraction, biodiesel processing and other value-added products production techniques in China. The commercial production of seed, oil and biodiesel as well as research advancement in China is also introduced and discussed. Examples about our new bred mutant and selected high-oil-yield Jatropha varieties, high-qualified produced biodiesel, and biodiesel pilot plant are presented. Finally, future prospects of Jatropha biodiesel industry in China are discussed.  相似文献   

9.
The increasing industrialization and modernization of the world has to a steep rise for the demand of petroleum products. Economic development in developing countries has led to huge increase in the energy demand. In India, the energy demand is increasing at a rate of 6.5% per annum. The crude oil demand of the country is met by import of about 80%. Thus the energy security has become a key issue for the nation as a whole. Petroleum-based fuels are limited. The finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these reserves are facing foreign exchange crises, mainly due to the import of crude oil. Hence it is necessary to look forward for alternative fuels, which can be produced from feedstocks available within the country.Biodiesel, an ecofriendly and renewable fuel substitute for diesel has been getting the attention of researchers/scientists of all over the world. The R & D has indicated that up to B20, there is no need of modification and little work is available related to suitability and sustainability of biodiesel production from Jatropha as non-edible oil sources. In addition, the use of vegetable oil as fuel is less polluting than petroleum fuels. The basic problem with biodiesel is that it is more prone to oxidation resulting in the increase in viscosity of biodiesel with respect to time which in turn leads to piston sticking, gum formation and fuel atomization problems.The report is an attempt to present the prevailing fossil fuel scenario with respect to petroleum diesel, fuel properties of biodiesel resources for biodiesel production, processes for its production, purification, etc. Lastly, an introduction of stability of biodiesel will also be presented.  相似文献   

10.
In this study, performance of a diesel engine operated with Jatropha and Palm biodiesel blends at high idling conditions has been evaluated. The result obtained from experiment elucidate that, at all idling modes HC and CO emissions of both blends decreases, however, NOx emissions increases compared to pure diesel fuel. Jatropha biodiesel has higher viscosity compared to Palm biodiesel, which might have degraded the spray characteristics and caused slightly improper mixing which might have led to slightly incomplete combustion, thus at both idling conditions, Jatropha blends emitted higher CO and HC compared to Palm biodiesels. Compared to diesel fuel, CO emissions were 5.9–9.7%, 17.6–22.6%, 23.5–29%, 2.9–6.4%, 5.9–14.5% and 11.8–17.74% less, HC emissions were 10.3–11.5%, 24.13–30.76%, 34.5–39%, 6.9–7.7%, 26–27% and 31–35% less and NOx emissions were 8.3–9.5%, 14–15%, 22–25%, 5–7.14%, 10–11.3% and 17–18% more respectively for 5, 10 and 20% blends of Palm and Jatropha biodiesel. Compared to diesel fuel, at high idling conditions brake specific fuel consumption all Palm and Jatropha biodiesel–diesel blends increased. Compared to diesel fuel, BSFC were 1.14–1.35%, 2.28–2.96%, 7.1–8.35%, 2.28–2.69%, 3.98–5.39% and 8.83–9.29% more respectively for 5, 10 and 20% blends of Palm and Jatropha biodiesel.  相似文献   

11.
The scarcity of fossil fuels, in addition to environmental damage due to fossil fuel use and exploration, promotes research into alternative energy sources such as biofuels. Biodiesel has attracted considerable attention in recent years as an alternative to fossil fuels, since it is renewable, biodegradable and non-toxic. Biodiesel can be obtained from animal fat, vegetable oils including cooking oil. In this work, a method of producing biodiesel from seed cake waste from the edible Jatropha curcas L. plant was developed. Oil extraction using hexane gave the best oil quality. Transesterifications of approximately 95% were obtained by alkali or acid catalysis, and the obtained biodiesel products were successfully corroborated with NMR techniques. Since J. curcas is a non-toxic plant, the remaining de-oiled cake was tested for its nutritional properties. Nutritional analysis showed a content of 43% and 33% of protein and carbohydrate, respectively; suggesting that this waste can be used as an attractive protein and carbohydrate source for fermentation processes and/or for formulations for animal feeding. In conclusion, this work provides evidence that the oil from an edible and non-toxic species of J. curcas is an attractive option for biodiesel production with nutritional applications and negligible wasting.  相似文献   

12.
Biodiesel is a renewable and sustainable biofuel. There are various production processes to produce biodiesel from different kinds of raw materials. In this study, the environmental impacts of biodiesel production from non-edible Jatropha oil and waste cooking oil (WCO) were investigated and compared using systematic life cycle assessment. The results show that crops growing and cultivation of non-edible Jatropha curcas lead to higher environmental impacts compared to WCO process. However, biodiesel production process from Jatropha oil has better performance because the WCO process needs to consume variety of chemicals and requires a large amount of energy for the pretreatment of raw WCO and further chemical conversion to biodiesel. Results also indicate that the collection mechanism of WCO has significant contributions towards environmental impacts. In general, biodiesel production from Jatropha oil shows higher impacts for damage categories of climate change, human health and ecosystem quality whereas biodiesel production from WCO has more severe environmental impacts for resource category. The total environmental impact is 74% less in case of using WCO as raw material compared to non-edible Jatropha oil.  相似文献   

13.
The oil crisis and the global effort to control the greenhouse effect have forced the researchers to think of various alternative energy sources. This decade has seen increasing importance of chemically treated vegetable oil biodiesel fuels for various applications in heat engines. Post-Kyoto negotiations refer to high level talks attempting to address global warming by limiting greenhouse gas emissions. During Climate Change Conference in Copenhagen the potential topics discussed were carbon capture and storage, biofuels, adaptation financing, technology transfer, sustainable agriculture, emissions targets, tropical forests and rural and transport electrification. Our area of interest is biofuels under which nonedible Jatropha oil due to its properties which are very close to diesel fuel is being explored as an alternative fuel. A lot of research is underway in the use of different biodiesel fuels in Internal Combustion engines, but very limited work has been reported in its use in gas turbines. This paper describes the results of an ongoing development program aimed at determining the technical feasibility of utilizing biodiesel in IS/60 Rovers gas turbine. The test rig is equipped with a dynamometer for turbine loading and AVL exhaust gas analyzer has been used to record emissions. The test results of 2 blends have been reported in this paper. Analyzing the results compared with the base line performance using diesel fuel under normal conditions show encouraging outcomes.  相似文献   

14.
Research on alternative fuel for the vehemently growing number of automotivesis intensified due to environmental reasons rather than turmoil in energy price and supply. From the policy and steps to emphasis the use of biofuel by governments all around the world, this can be comprehended that biofuel have placed itself as a number one substitute for fossil fuels. These phenomena made Southeast Asia a prominent exporter of biodiesel. But thrust in biodiesel production from oilseeds of palm and Jatropha curcas in Malaysia, Indonesia and Thailand is seriously threatening environmental harmony. This paper focuses on this critical issue of biodiesels environmental impacts, policy, standardization of this region as well as on the emission of biodiesel in automotive uses. To draw a bottom line on feasibilities of different feedstock of biodiesel, a critical analysis on oilseed yield rate, land use, engine emissions and oxidation stability is reviewed. Palm oil based biodiesel is clearly ahead in all these aspects of feasibility, except in the case of NOx where it lags from conventional petro diesel.  相似文献   

15.
K Pramanik   《Renewable Energy》2003,28(2):239-248
In the present investigation the high viscosity of the jatropha curcas oil which has been considered as a potential alternative fuel for the compression ignition (C.I.) engine was decreased by blending with diesel. The blends of varying proportions of jatropha curcas oil and diesel were prepared, analyzed and compared with diesel fuel. The effect of temperature on the viscosity of biodiesel and jatropha oil was also studied. The performance of the engine using blends and jatropha oil was evaluated in a single cylinder C.I. engine and compared with the performance obtained with diesel. Significant improvement in engine performance was observed compared to vegetable oil alone. The specific fuel consumption and the exhaust gas temperature were reduced due to decrease in viscosity of the vegetable oil. Acceptable thermal efficiencies of the engine were obtained with blends containing up to 50% volume of jatropha oil. From the properties and engine test results it has been established that 40–50% of jatropha oil can be substituted for diesel without any engine modification and preheating of the blends.  相似文献   

16.
In recent decades, the energy crisis and environmental issues have become a crucial problem. The rapid industrialization has lead humankind to deplete the fossil fuels and consequently the pollutant emissions have increased in the world. Many investigations have been done to find an alternative fuel to fulfill increasing energy demand. Recently, biodiesel has been introduced as an economical renewable and sustainable fuel which is cited as an environment-friendly resource. Around 350 oil-bearing crops were analyzed and some of them were capable to be considered as potential alternative fuels for diesel engines. These include virgin vegetable oils and waste vegetable oils. Rapeseed, jatropha, soybean, and palm oil are mentioned as the most common sources of biodiesel. Many countries have invested in biodiesel as an acceptable source of energy not only in research area but also in production and export. It has been proven that the biodiesel combustion characteristics are similar as petroleum. Higher ignition pressure and temperature, shorter ignition delay and higher peak release were reported in experimental combustion of biodiesel blends. Also, the efficiency of biodiesel base catalysts is more than enzymes and acid catalysts. This article is a literature review on necessity of biodiesel production as alternative fuel recourse in Malaysia and tries to illustrate the combustion characteristics and pollutant formation in biodiesel application.  相似文献   

17.
The high viscosity of vegetable oils leads to problem in pumping and spray characteristics. The inefficient mixing of vegetable oils with air contributes to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main resources for biodiesel production can be non-edible oils obtained from plant species such as Pongamia pinnata (Honge oil), Jatropha curcas (Ratanjyot), Hevea brasiliensis (Rubber) and Calophyllum inophyllum (Nagchampa). Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. This paper presents the results of investigations carried out on a single-cylinder, four-stroke, direct-injection, CI engine operated with methyl esters of Honge oil, Jatropha oil and sesame oil. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, NOX, ignition delay, combustion duration and heat release rates have been presented and discussed. Engine performance in terms of higher brake thermal efficiency and lower emissions (HC, CO, NOX) with sesame oil methyl ester operation was observed compared to methyl esters of Honge and Jatropha oil operation.  相似文献   

18.
This study reports the conversion of Jatropha curcas oil to biodiesel catalyzed by sulphated zirconia loaded on an alumina catalyst using response surface methodology (RSM). Specifically, it studies the effect of interaction between process variables on the yield of biodiesel. Jatropha is found to be survived in different locations in South-East Asia. Jatropha oil is favoured to palm oil for its cold filter plugging the point (CFPP) values, making it a better option for use in cold climates. The increasing industrialization and modernization of the world have to a steep rise for the demand of petroleum products. Economic development in developing countries has led to huge increase in the energy demand. The crude oil demand of the country is met by imparting about 80%. Thus, the energy security has become a key issue for the nation as a whole. Petroleum-based fuels are limited. This article is an attempt to present the prevailing fossil-fuel scenario with respect to petroleum diesel, fuel properties of biodiesel of biodiesel resources for biodiesel production, processes for its production, purification, etc. At last, a discussion of stability of biodiesel is described here.  相似文献   

19.
20.
For the past few decades, palm oil has gone through a revolution that few would have predicted. From a humble source of edible oil that was heavily criticized as being un-healthy and un-fit for human consumption, it has proven itself based on scientific findings that it is indeed one of the most nutritious edible oils in the world. Besides, palm oil, the cheapest vegetable oil in the market has diversified as one of the main feedstock for oleo-chemical industries. Recently, with the price of crude petroleum hitting records height every other day, palm oil has become one of the few feasible sources for biodiesel, a renewable substitute for petroleum-derived diesel. Nevertheless, the conversion of palm oil into biodiesel has again received criticism from various NGOs worldwide, mainly on extinction of orang utans, deforestation and particularly the food versus fuel dispute. It was claimed that the conversion of food crops to fuel would significantly increase the number of undernourished people in the world. Malaysia, being the world second largest producer of palm oil, is not spared from this criticism. On the contrary, in the present study it was found that palm oil is indeed the most economical and sustainable source of food and biofuel in the world market. Besides, it was shown that it has the capacity to fulfill both demands simultaneously rather than engaging in priority debate. Nevertheless, fuel is now a necessity rather than a luxury for economy and development purposes. A few strategies will then be presented on how palm oil can survive in this feud and emerged as the main supply of affordable and healthy source of edible oil while concurrently satisfying the market demand for biodiesel throughout the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号