首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
China is the second largest energy consumer in the world. This paper reviews the production and consumption of traditional and renewable energy in China over the past three decades. It also presents an overview on the research and development of renewable energy, such as solar, biomass, geothermal, ocean and wind energy in China. Study indicated that the usage of renewable energy in China shows a promising prospect in the near future, of which biomass is found to be one of the most promising renewable energy resources that have great potential for development in China.  相似文献   

2.

In this work, renewable energy facilities of Turkey were investigated. Electricity is mainly produced by thermal power plants, consuming coal, lignite, natural gas, fuel oil and geothermal energy, and hydro power plants in Turkey. Turkey has no large oil and gas reserves. The main indigenous energy resources are lignite, hydro and biomass. Turkey has to adopt new, long-term energy strategies to reduce the share of fossil fuels in primary energy consumption. For these reasons, the development and use of renewable energy sources and technologies are increasingly becoming vital for sustainable economic development of Turkey. The most significant developments in renewable production are observed hydropower and geothermal energy production. Renewable electricity facilities mainly include electricity from biomass, hydropower, geothermal, and wind and solar energy sources. Biomass cogeneration is a promising method for production bioelectricity.  相似文献   

3.
Iraq suffers from electricity shortages, and many challenges will have to be overcome to meet future increases in electrical demands. This investigation found that solar, wind and biomass energy are not being utilized sufficiently at present, but these energies could play an important role in the future of Iraq’s renewable energy. Additionally, the potential of offshore-wind energy in the Gulf (near Basrah in the southern part of Iraq) needs to be investigated. The Iraqi government's attempts to utilize renewable energy have been discussed. This paper aims to review and discuss the status and future of renewable energy in Iraq. The uses of renewable energy sources, such as solar, wind and biomass, have been reviewed. This paper concludes with recommendations for the utilization of these energy resources.  相似文献   

4.
太阳能作为一种可再生的新能源,越来越引起人们的关注。我国每年太阳能资源理论储量折合标准煤达17000亿t,而包括风能、水能、生物质能、地热能在内的其它所有可再生能源折合标准煤不到60亿t,太阳能利用潜力巨大。太阳能发电主要有光伏发电和光热发电。太阳能光热发电比光伏发电具有更多的优势。阐述了太阳能光热发电的国内外发展现状,分析了河北省太阳能的资源潜力,并提出了河北省发展太阳能光热发电的建议和对策.  相似文献   

5.
A majority of the Indian population does not have access to convenient energy services (LPG, electricity). Though India has made significant progress in renewable energy, the share of modern renewables in the energy mix is marginal. This paper reviews the status and potential of different renewables (except biomass) in India. This paper documents the trends in the growth of renewables in India and establishes diffusion model as a basis for setting targets. The diffusion model is fitted tot the past trends for wind, small hydro and solar water heating and is used to establish future targets. The economic viability and green house gas (GHG) saving potential is estimated for each option. Several renewables have high growth rates, for example wind, Photovoltaic (PV) module manufacture and solar water heaters. New technologies like Tidal, OTEC, Solar thermal power plants and geothermal power plants are at the demonstration stage and future dissemination will depend on the experience of these projects.  相似文献   

6.
Energy is directly related to the most critical social issues which affect sustainable development. Today there is a great incentive for countries to exploit renewable energies in order to slow down the changes in environment and to guard against future trends. This paper presents a review of the assessed potential of renewable resources and practical limitations to their considerable use in the perspective of present scenarios and future projections of the national energy for Oman. Solar and wind are likely to play an important role in the future energy in Oman provided that clear policies are established by the higher authority for using renewable energy resources. Comparison of different solar energy technologies revealed that Concentrator Photovoltaic (CPV) technology may constitute a more appropriate choice for large solar power plants implementation in Oman. Moreover, Oman will not be alone in the region in this regard as similar moves are carried out in other Middle Eastern countries. The status of energy conservation and demand-side management are also discussed in the paper.  相似文献   

7.
Given Algerian’s abundant solar, wind resources, biomass, geothermal, etc. represent a potential market for renewable energy technologies. This article presents a review and the use of renewable energy situation in Algeria. The analysis of the present renewable energy situation and future objective are also discussed.  相似文献   

8.
The interest in commercial green power in the developed world is about 25 years old, starting in the mid-1970s after the first oil shock. Electricity derived from any renewable energy source is considered "green" because of the negligible impact on greenhouse gas emissions. In terms of commercial energy, this list currently includes hydro, wind, biomass, geothermal, and solar. In the 1970s and 1980s, the interest in green power was driven by the goal of replacing fossil fuels to minimize the dependence on oil. Now there is a broader goal: to minimize the emission of CO/sub 2/ (the most common global warming gas) that results from the burning of fossil fuels. This article discusses the market potential for renewable resources, green power in the mainstream electric utilities, and the following renewable resources: hydroelectric power, wind power; biomass; solar thermal power; solar photovoltaics; and geothermal power.  相似文献   

9.
近年来,随着国家倡导低碳经济,以风电、水电、太阳能、生物质能为代表的新能源得到了快速的发展。风能、水能、太阳能、生物质能等多种可再生能源联合发电是一种有效的可再生能源利用方式。简述了风能、水能,太阳能和生物质能的发电原理,并探讨了目前国内关于多种能源联合互补发电系统的设计研究成果。  相似文献   

10.
This article aims to assess the likely competitiveness of different forms of renewable energy in Colombia over the next 25 years. To this end, it compares the likely power production cost for a set of renewable energy sources, and compares them to the likely long-run cost of traditional energy. Costs from global and local externalities through the use of traditional energy sources are also factored into the analysis. The key conclusion of the article is that while solar PV will likely remain uncompetitive under any future cost scenario, cost paths for small hydro, modern biomass or geothermal are already close enough to being competitive, so that appropriate government intervention may make the decisive difference in making these technologies competitive with conventional energy technologies.  相似文献   

11.
12.
During the last two decades, Rwanda has experienced an energy crisis mostly due to lack of investment in the energy sector. With the growing of the population and increasing industrialization in urban areas, energy provided by existing hydro and thermal power plants has been increasingly scarce with high energy costs, and energy instability. Furthermore, as wood fuel is the most important source of energy in Rwanda, the enduring dependence on it and fossil fuel consumption as well, will continue to impact on the process of environmental degradation. Rwanda is rich with abundant renewable energy resources such as methane gas in Lake Kivu, solar, biomass, geothermal; and wind energy resource is currently being explored. Recently, the Government has given priority to the extension of its national electrical grid through development of hydro power generation projects, and to rural energy through development of alternative energy projects for rural areas where access to national grid is still difficult. This paper presents a review of existing energy resources and energy applications in Rwanda. Recent developments on renewable energy are also presented.  相似文献   

13.
Present electricity grids are predominantly thermal (coal, gas) and hydro based. Conventional power planning involves hydro-thermal scheduling and merit order dispatch. In the future, modern renewables (hydro, solar and biomass) are likely to have a significant share in the power sector. This paper presents a method to analyse the impacts of renewables in the electricity grid. A load duration curve based approach has been developed. Renewable energy sources have been treated as negative loads to obtain a modified load duration curve from which capacity savings in terms of base and peak load generation can be computed. The methodology is illustrated for solar, wind and biomass power for Tamil Nadu (a state in India). The trade-offs and interaction between renewable sources are analysed. The impacts on capacity savings by varying the wind regime have also been shown. Scenarios for 2021–22 have been constructed to illustrate the methodology proposed. This technique can be useful for power planners for an analysis of renewables in future electricity grids.  相似文献   

14.
There are regions in the Republic of Croatia (underdeveloped, devastated by war, depopulated, as well as islands and mountainous areas) which are still disconnected from the electricity network or where the current network capacity is insufficient. In addition, these regions have good renewable energy potential. Since the decentralized energy generation (DEG) covers a broad range of technologies, including many renewable energy technologies (RET) that provide small-scale power at sites close to the users, this concept could be of interest for these locations. This paper identifies the areas in Croatia where such systems could be applied. Consideration is given to geographical locations as well as possible applications. Wind, hydro, solar photovoltaic, geothermal, and biomass conversion systems were analyzed from a technological and economic point of view. Since the renewable energy sources (RES) data for Croatia are rather scarce, the intention was to give a survey of the present situation and an estimate of future potential for DEG based on RES. The energy potential (given as capacity and energy capability) and production costs were calculated on a regional basis and per type of RET. Finally, the RES cost–supply curves for 2006 and 2010 are given.  相似文献   

15.
In Lithuania, the generation of electricity is based on the nuclear energy and on the fossil fuels. After the decommissioning of Ignalina nuclear power plant in 2009, the Lithuanian Power Plant and other thermal plants will become the major sources of electricity. Consequently, the Lithuanian power sector must focus on the implementation of renewable energy projects, penetration of new technologies and on consideration of the future opportunities for renewables, and Government policy for promoting this kind of energy. Production of electricity from renewable energy is based on hydro, biomass and wind energy resources in Lithuania. Due to the typical climatic condition in Lithuania the solar photovoltaics and geothermal energy are not used for power sector. Moreover, the further development of hydropower plants is limited by environmental restrictions, therefore priority is given to wind energy development and installation of new biomass power plants. According to the requirements set out in the Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market [Official Journal L283, 33–40, 27 October 2001], 7% of gross consumption of electricity will be generated from renewable energy by 2010 in Lithuania. The aim of this paper is to show the estimation of the maximum renewable power penetration in the Lithuanian electricity sector and possible environmental impact.  相似文献   

16.
Turkey's demand for energy and electricity is increasing rapidly. Turkey is heavily dependent on expensive imported energy resources that place a big burden on the economy and air pollution is becoming a great environmental concern in the country. Turkey's energy production meets nearly 28% of its total primary energy consumption. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. States have played a leading role in protecting the environment by reducing emissions of greenhouse gases (GHGs). In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey presently has considerable renewable energy sources. The most important renewable sources are hydropower, biomass, geothermal, solar and wind. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Turkey has a great and ever-intensifying need for power and water supplies and they also have the greatest remaining hydro potential. Hydropower and especially small hydropower are emphasized as Turkey's renewable energy sources. Turkey's hydro electric potential can meet 33–46% of its electric energy demand in 2020 and this potential may easily and economically be developed. This paper presents a review of the potential and utilization of the renewable energy sources in Turkey.  相似文献   

17.
Status of geothermal energy amongst the world's energy sources   总被引:1,自引:0,他引:1  
The world primary energy consumption is about 400 EJ/year, mostly provided by fossil fuels (80%). The renewables collectively provide 14% of the primary energy, in the form of traditional biomass (10%), large (>10 MW) hydropower stations (2%), and the “new renewables” (2%). Nuclear energy provides 6%. The World Energy Council expects the world primary energy consumption to have grown by 50–275% in 2050, depending on different scenarios. The renewable energy sources are expected to provide 20–40% of the primary energy in 2050 and 30–80% in 2100. The technical potential of the renewables is estimated at 7600 EJ/year, and thus certainly sufficiently large to meet future world energy requirements. Of the total electricity production from renewables of 2826 TWh in 1998, 92% came from hydropower, 5.5% from biomass, 1.6% from geothermal and 0.6% from wind. Solar electricity contributed 0.05% and tidal 0.02%. The electricity cost is 2–10 US¢/kWh for geothermal and hydro, 5–13 US¢/kWh for wind, 5–15 US¢/kWh for biomass, 25–125 US¢/kWh for solar photovoltaic and 12–18 US¢/kWh for solar thermal electricity. Biomass constitutes 93% of the total direct heat production from renewables, geothermal 5%, and solar heating 2%. Heat production from renewables is commercially competitive with conventional energy sources. Direct heat from biomass costs 1–5 US¢/kWh, geothermal 0.5–5 US¢/kWh, and solar heating 3–20 US¢/kWh.  相似文献   

18.
The New Zealand electricity generation system is dominated by hydro generation at approximately 60% of installed capacity between 2005 and 2007, augmented with approximately 32% fossil-fuelled generation, plus minor contributions from geothermal, wind and biomass resources. In order to explore the potential for a 100% renewable electricity generation system with substantially increased levels of wind penetration, fossil-fuelled electricity production was removed from an historic 3-year data set, and replaced by modelled electricity production from wind, geothermal and additional peaking options. Generation mixes comprising 53–60% hydro, 22–25% wind, 12–14% geothermal, 1% biomass and 0–12% additional peaking generation were found to be feasible on an energy and power basis, whilst maintaining net hydro storage. Wind capacity credits ranged from 47% to 105% depending upon the incorporation of demand management, and the manner of operation of the hydro system. Wind spillage was minimised, however, a degree of residual spillage was considered to be an inevitable part of incorporating non-dispatchable generation into a stand-alone grid system. Load shifting was shown to have considerable advantages over installation of new peaking plant. Application of the approach applied in this research to countries with different energy resource mixes is discussed, and options for further research are outlined.  相似文献   

19.
Renewable energy sources and technologies have potential to provide solutions to the long-standing energy problems being faced by the developing countries. The renewable energy sources like wind energy, solar energy, geothermal energy, ocean energy, biomass energy and fuel cell technology can be used to overcome energy shortage in India. To meet the energy requirement for such a fast growing economy, India will require an assured supply of 3–4 times more energy than the total energy consumed today. The renewable energy is one of the options to meet this requirement. Today, renewable account for about 33% of India's primary energy consumptions. India is increasingly adopting responsible renewable energy techniques and taking positive steps towards carbon emissions, cleaning the air and ensuring a more sustainable future. In India, from the last two and half decades there has been a vigorous pursuit of activities relating to research, development, demonstration, production and application of a variety of renewable energy technologies for use in different sectors. In this paper, efforts have been made to summarize the availability, current status, major achievements and future potentials of renewable energy options in India. This paper also assesses specific policy interventions for overcoming the barriers and enhancing deployment of renewables for the future.  相似文献   

20.
The article outlines renewable energy (RE) sources according to the energy efficiency policy in Lithuania as well as practical experience of implementation of RE projects within the framework of the government policy to promote RES use due to the requirement of the European Union. The main goal of the country is to reduce the import of fossil fuel, to improve environment conditions and to reduce the climate change impact. Analysis of implemented RE projects and forecasts for the future projects are also presented. Most of the efforts in Lithuania were aimed at drafting the biomass (wood chips, wood waste, straw, biogas) and small hydro projects and their subsequent implementation. At present the total capacity of wood-chip-fuelled boilers reached above 251 MW. No serious obstacles can be seen for the extension of wood fuel use. At present, new demonstrational projects have been started covering geothermal energy, solar energy, biogas, biofuels for transport and other. In this time, the RE sources comprise 7.69% of national energy balance. Taking into account feasible resources of RE (it is more than 19.85 TWh/year) and the ongoing implementation of projects it is clear that the share of RE sources will constitute 12–13% of national energy balance in 2010 year. The main factor limiting further growth is high investment costs. The electricity production from local and RE sources in Lithuania is mainly based on hydro energy. At this time the wind energy is not used for this purpose. The electricity production from local and renewable energy sources is about 3.22% of the total consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号