首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although error modeling and compensation have given significant results for three-axis CNC machine tools, a few barriers have prevented this promising technique from being applied in five-axis CNC machine tools. One crucial barrier is the difficulty of measuring or identifying link errors in the rotary block of five-axis CNC machine tools. The error model is thus not fully known. To overcome this, the 3D probe-ball and spherical test method are successfully developed to measure and estimate these unknown link errors. Based on the identified error model, real-time error compensation methods for the five-axis CNC machine tool are investigated. The proposed model-based error compensation method is simple enough to implement in real time. Problems associated with the error compensation in singular position of the five-axis machine tool are also discussed. Experimental results show that the overall position accuracy of the five-axis CNC machine tool can be improved dramatically.  相似文献   

2.
To improve the accuracy of CNC machine tools, error sources and its effects on the overall position and orientation errors must be known. Most motional errors in the error model of five-axis machine tool can be measured with modern laser interferometer devices, but there are still some not measurable geometric errors. These not measurable errors include constant, inaccurate link errors of components such as rotary axes block, main spindle block and tool holder. After setting all measured errors in the error model, a reduced error model is defined, which describes the influence of each unknown and not measurable link error on the overall position errors of the five-axis machine tool. On the other hand, the newly developed probe-ball device can measure the overall position errors of five-axis machine tools directly. Based on the reduced model and the overall position errors, the link errors can be estimated very accurately with the least square estimation method. The error model is then fully known and can be used for advanced purposes such as error prediction and compensation.  相似文献   

3.
A new compensation method for geometry errors of five-axis machine tools   总被引:4,自引:1,他引:4  
The present study aims to establish a new compensation method for geometry errors of five-axis machine tools. In the kinematic coordinate translation of five-axis machine tools, the tool orientation is determined by the motion position of machine rotation axes, whereas the tool tip position is determined by both machine linear axes and rotation axes together. Furthermore, as a nonlinear relationship exists between the workpiece coordinates and the machine axes coordinates, errors in the workpiece coordinate system are not directly related to those of the machine axes coordinate system. Consequently, the present study develops a new compensation method, the decouple method, for geometry errors of five-axis machine tools. The method proposed is based on a model that considers the tool orientation error only related to motion of machine rotation axes, and it further calculates the error compensations for rotation axes and linear axes separately, in contrast to the conventional method of calculating them simultaneously, i.e. determines the compensation of machine rotation axes first, and then calculates the compensation associated with the machine linear axes. Finally, the compensation mechanism is applied in the postprocessor of a CAM system and the effectiveness of error compensation is evaluated in real machine cutting using compensated NC code. In comparison with previous methods, the present compensation method has attributes of being simple, straightforward and without any singularity point in the model. The results indicate that the accuracy of positioning was improved by a factor of 8–10. Hence, the new compensation mechanism proposed in this study can effectively compensate geometry errors of five-axis machine tools.  相似文献   

4.
Five-axis machine tools can be programmed to keep a constant nominal tool end point position while exercising all five axes simultaneously. This kinematic capability allows the use of a 3D proximity sensing head mounted at the spindle to track the position changes of a precision steel ball mounted on the machine table effectively measuring the 3D Cartesian volumetric errors of the machine. The new sensing head uses capacitive sensors to gather data on the fly during a synchronized five-axis motion which lasts less than 2 min. Because the measured volumetric errors are strongly affected by the link geometric errors, they can be used to estimate the link errors through an iterative procedure based on an identification Jacobian matrix. The paper presents the new sensor, the identification model and the experimental validation. The approach allows all eight link errors i.e. the three squarenesses of linear axes and the four orientations and center lines offset of the rotary axes to be estimated with the proposed single setup test. The estimation approach is performed on a horizontal five-axis machine tool. Then, using the estimated link errors, the volumetric errors are predicted for axes combinations different from those used for the identification process. The estimated machine model correctly predicts 52–84% of the volumetric errors for the tested trajectories.  相似文献   

5.
A novel capacitance–sensor based multi-degree-of-freedom (DOF) measurement system has been developed for measuring geometric errors of a miniaturized machine tool (mMT) overcoming the size limitations. In the present work five geometric error components of a three-axis mMT are measured simultaneously along each axis and the squareness errors are determined by the slopes of straightness error profiles. Least-squares fitting method is used to represent the analytical models of geometric errors. A kinematic chain consisting of various structural members of mMT is introduced to establish the positional relationships among its coordinate frames. Based on this kinematic chain a general volumetric error model has been developed to synthesize all geometric error components of a miniaturized machine tool. Then, a recursive compensation method is proposed to achieve error compensation efficiently. Test results show that the positioning accuracy of miniaturized machine tool has been improved with compensation.  相似文献   

6.
Nonlinear and configuration-dependent five-axis kinematics make contouring errors difficult to estimate and control in real time. This paper proposes a generalized method for the on-line estimation and control of five-axis contouring errors. First, a generalized Jacobian function is derived based on screw theory in order to synchronize the motions of linear and rotary drives. The contouring error components contributed by all active drives are estimated through interpolated position commands and the generalized Jacobian function. The estimated axis components of contouring errors are fed back to the position commands of each closed loop servo drive with a proportional gain. The proposed contouring error estimation and control methods are general, and applicable to arbitrary five-axis tool paths and any kinematically admissible five-axis machine tools. The proposed algorithms are verified experimentally on a five-axis machine controlled by a modular research CNC system built in-house. The contouring errors are shown to be reduced by half with the proposed method, which is simple to implement in existing CNC systems.  相似文献   

7.
This paper proposes a machining test to parameterize error motions, or position-dependent geometric errors, of rotary axes in a five-axis machine tool. At the given set of angular positions of rotary axes, a square-shaped step is machined by a straight end mill. By measuring geometric errors of the finished test piece, the position and the orientation of rotary axis average lines (location errors), as well as position-dependent geometric errors of rotary axes, can be numerically identified based on the machine׳s kinematic model. Furthermore, by consequently performing the proposed machining test, one can quantitatively observe how error motions of rotary axes change due to thermal deformation induced mainly by spindle rotation. Experimental demonstration is presented.  相似文献   

8.
This paper proposes a single setup identification method of 12 component errors of rotary axes on five-axis machine tools by using a touch trigger probe and an artefact. At first, a basic idea of pre-layout of target points combined with the shift of measuring reference is proposed. Influence of setup errors of touch trigger probe and artefact on measuring results is identified quantitatively and included in error models. A single setup measuring method is then designed to identify 12 component errors of rotary axes on five-axis machine tools with a tilting head and a rotary table. The expansion of this basic idea on five-axis machine tools with other configurations is also provided. Validation and uncertainty analysis of the identified values are also provided. The measuring accuracy is guaranteed by the complete error model while the measuring efficiency is improved significantly by the single setup measuring method.  相似文献   

9.
This paper proposes an efficient and automated scheme to predict and identify the position and motion errors of rotary axes on a non-orthogonal five-axis machining centre using the double ball bar (DBB) system. Based on the Denavit-Hartenberg theory, a motion deviations model for the tilting rotary axis B and rotary C of a non-orthogonal five-axis NC machine tool is established, which considers tilting rotary axis B and rotary C static deviations and dynamic deviations that total 24. After analysing the mathematical expression of the motion deviations model, the QC20 double ball bar (DBB) from the Renishaw Company is used to measure and identify the motion errors of rotary axes B and C, and a measurement scheme is designed. With the measured results, the 24 geometric deviations of rotary axes B and C can be identified intuitively and efficiently. This method provides a reference for the error identification of the non-orthogonal five-axis NC machine tool.  相似文献   

10.
Relationships between straightness and angular kinematic errors in machines   总被引:1,自引:0,他引:1  
The software compensation approach for the improvement of machine tool and coordinate measuring machine accuracy depend to some extent on machine error modelling and measurement methodologies. The currently established methodology is based on the derivation of tool position error (for machine tools) or stylus tip position error (for coordinate measuring machines) by the combination of individual axis joint kinematic error parameters. The purpose of this paper is to propose a machine error analysis based on error classification. This taxonomic approach forms a conceptual basis for an analysis of machine errors with a deeper understanding of error mechanisms at more fundamental levels. The relevance of this approach is investigated through the case study of the coupling mechanism between joint kinematic angular and straightness errors of machine linear axes. The limitations of the joint kinematic straightness and angular error modelling based on purely abstract mathematical dependence principles are explored through simulations and experiments.  相似文献   

11.
In this paper, a contour error model of the tool center point (TCP) for a five-axis machine tool is proposed to estimate dynamic contour errors on three types of measuring paths. A servo tuning approach to achieve five-axis dynamic matching is utilized to improve contouring performance of the cutting trajectory. The TCP control function is developed to generate measuring trajectories where five axes are controlled simultaneously to keep the TCP at a fixed point. The interpolation method of the rotary axes with S-shape acceleration/deceleration (ACC/DEC) is applied to plan smooth five-axis velocity profiles. The contour error model for five axes is derived by substituting five-axis motion commands into servo dynamics models. The steady state contour error (SSCE) model is demonstrated to illustrate three particular dynamic behaviors: the single-circle with amplitude modulation, double-circle effect and offset behavior. Furthermore, the model is also utilized to investigate the behaviors of dynamic contour errors change in 3D space. The factors that affect dynamic contour errors, including the initial setup position, feedrate and five-axis servo gains, are analyzed. With the developed servo tuning process under the measuring paths (CK1, CK2 and CK4), the contour errors caused by servo mismatch are reduced remarkably. Finally, experiments are conducted on a desktop five-axis engraving machine to verify the proposed methodology can improve dynamic contouring accuracy of the TCP significantly.  相似文献   

12.
Ensuring that a five-axis machine tool is operating within tolerance is critical. However, there are few simple and fast methods to identify whether the machine is in a “usable” condition. This paper investigates the use of the double ball bar (DBB) to identify and characterise the position independent geometric errors (PIGEs) in rotary axes of a five-axis machine tool by establishing new testing paths. The proposed method consists of four tests for two rotary axes; the A-axis tests with and without an extension bar and the C-axis tests with and without an extension bar. For the tests without an extension bar, position errors embedded in the A- and C-axes are measured first. Then these position errors can be used in the tests with an extension bar, to obtain the orientation errors in the A- and C-axes based on the given geometric model. All tests are performed with only one axis moving, thus simplifying the error analysis. The proposed method is implemented on a Hermle C600U five-axis machine tool to validate the approach. The results of the DBB tests show that the new method is a good approach to obtaining the geometric errors in rotary axes, thus can be applied to practical use in assembling processes, maintenance and regular checking of multi-axis CNC machine tools.  相似文献   

13.
This paper proposes a new ball bar test method for the inspection of dynamic errors of rotary axes in five-axis CNC machine tools. The test circle is defined in a workpiece coordinate system and the ball bar test is performed by simultaneously driving of linear–rotary axis couple. The effects of the center position and the radius on the setting values, rotational range and measurement sensitivity of the rotary axis were investigated. The proposed ball bar test is performed in two steps: the circular positioning and the circular tracking with a continuous feed. Axial dynamic errors are obtained by subtracting the measured tracking errors from the positioning errors. A ball bar test system (BBTS) was developed to plan the tool path and the tool orientation, to communicate with the five-axis CNC controller and to process the measured data. Error patterns were simulated regarding the gain mismatch, backlash and tracking direction to help a fast diagnosis of the error sources. Simulations and experimental results prove the effectiveness of the new test method.  相似文献   

14.
Dynamic error is one of the major error sources for five-axis machine tools in achieving high-speed machining. It can be estimated and compensated by means of servo dynamics modeling and servo control method. This paper presents a contour error model on five-axis measuring paths where the dynamics and contour errors of the tool center point (TCP) can be estimated accurately during five-axis synchronized motions. The forward and inverse kinematics equations are derived according to the kinematic configuration of a C-type five-axis machine. To generate smooth measuring paths, the S-shape acceleration/deceleration (ACC/DEC) method is applied on planning the motion trajectory. The contour error model of the TCP is derived by substituting the commands of the measuring trajectory into the servo dynamics models. To investigate how the contour charts of the TCP are affected by the dynamic gains of five-axis servo loops, twelve combinations under different gains are studied. It is shown that, for the CK2 path, the steady-state contour error consists of an offset and a double-circular trajectory which is quite different from that of two-axis contour path. By tuning the gains of the servo loops, the dynamics mismatch among five axes can be eliminated and the contour error of the TCP (CETCP) can be reduced. To validate the contour error equations, simulations and experiments are performed to demonstrate that the proposed method improves the contouring performance of the TCP significantly when performing five-axis synchronized motions.  相似文献   

15.
Knowledge of a machine tool axis to axis geometric location errors allows compensation and corrective actions to be taken to enhance its volumetric accuracy. Several procedures exist, involving either lengthy individual test for each geometric error or faster single tests to identify all errors at once.This study focuses on the closed kinematic chain method which uses a single setup test to identify the eight link errors of a five axis machine tool. The identification is based on volumetric error measurements for different poses with a non-contact Cartesian measuring instrument called CapBall, developed in house.In order to evaluate the uncertainty on each identified error, a multi-output Monte Carlo approach is implemented. Uncertainty sources in the measurement and identification chain – such as sensors output, machine drift and frame transformation uncertainties – can be included in the model and propagated to the identified errors. The estimated uncertainties are finally compared to experimental results to assess the method. It also reveals that the effect of the drift, a disturbance, must be simulated as a function of time in the Monte Carlo approach.Results shows that the machine drift is an important uncertainty source for the machine tested.  相似文献   

16.
Five-axis machine tools are designed in a large variety of kinematic configurations and structures. Regardless of the type of the intended analysis, a kinematic model of the machine tool has to be developed in order to determine the translational and rotational joint movements required to achieve a specified position and orientation of the cutting tool relative to the workpiece. A generic and unified model is developed in this study as a viable alternative to the particular solutions that are only applicable to individual machine configurations. This versatile model is then used to verify the feasibility of the two rotational joints within the kinematic chain of three main types of five-axis machine tools: the spindle rotating, rotary table, and hybrid type. A numerical measure of total translational joint movement is proposed to evaluate the kinematic performance of a five-axis machine tool. The corresponding kinematic analyses have confirmed the advantages of the popular machine design that employs intersecting rotational axes and the common industrial practice during setup that minimizes the characteristic rotating arm length of the cutting tool and/or workpiece.  相似文献   

17.
A five-axis machine is presently one of the most versatile machine tools available and they are becoming increasingly common. To increase the accuracy capabilities of such machines, it is crucial to be able to study the geometric errors of the components and its effect on the quality of machined products. In five-axis machine tools, all linear axes are theoretically perpendicular (dot product, cos 90°=0) to each other and directed along or around the X, Y and Z of the cartesian coordinate system; but in working machines, the axes are nearly perpendicular (cos89.90°≠0) because of manufacturing error and assembly error or quasi-static error. The present paper discusses the development of a generalised error model for the effects of geometric errors of the components of the kinematic chain of a machine in the workspace and the results obtained by this model have been verified experimentally. The effect of geometric error has been studied further for cam profile generation using a five-axis machining centre and an improvement in the profile has been obtained.  相似文献   

18.
文中分析了非线性误差的产生原因及有效估算方法.通过机床的运动学分析,建立了BV100五轴联动机床的运动变换数学模型;结合线性插补原理,提出了该类机床的非线性运动误差的估算及补偿模型;通过VB语言,开发了具有非线性误差补偿功能的专用后置处理器,并通过某叶轮的切削加工实验验证了该后置处理器的正确性和实用性.  相似文献   

19.
The geometric errors of rotary axes are the fundamental errors of a five-axis machine tool. They directly affect the machining accuracy, and require periodical measurement, identification and compensation. In this paper, a precise calibration and compensation method for the geometric errors of rotary axes on a five-axis machine tool is proposed. The automated measurement is realized by using an on-the-machine touch-trigger technology and an artifact. A calibration algorithm is proposed to calibrate geometric errors of rotary axes based on the relative displacement of the measured reference point. The geometric errors are individually separated and the coupling effect of the geometric errors of two rotary axes can be avoided. The geometry error of the artifact as well as its setup error has little influence on geometric error calibration results. Then a geometric error compensation algorithm is developed by modifying the numeric control (NC) source file. All the geometric errors of the rotary errors are compensated to improve the machining accuracy. The algorithm can be conveniently integrated into the post process. At last, an experiment on a five-axis machine tool with table A-axis and head B-axis structure validates the feasibility of the proposed method.  相似文献   

20.
Volumetric positional accuracy constitutes a large portion of the total machine tool error during machining. In order to improve machine tool accuracy cost-effectively, machine tool geometric errors as well as thermally induced errors have to be characterized and predicted for error compensation. This paper presents the development of kinematic error models accounting for geometric and thermal errors in the Vertical Machining Center (VMC). The machine tool investigated is a Cincinnati Milacron Sabre 750 3 axes CNC Vertical Machining Center with open architecture controller. Using Rigid Body Kinematics and small angle approximation of the errors, each slide of the three axes vertical machining center is modeled using homogeneous coordinate transformation. By synthesizing the machine's parametric errors such as linear positioning errors, roll, pitch and yaw etc., an expression for the volumetric errors in the multi-axis machine tool is developed. The developed mathematical model is used to calculate and predict the resultant error vector at the tool–workpiece interface for error compensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号