首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Using the transformer coupling technique, this letter presents a new quadrature voltage-controlled oscillator (QVCO) with bottom series-coupled transistors. The proposed CMOS QVCO has been implemented with the TSMC $0.13~mu{rm m}$ 1P8M CMOS process, and the die area is $1.03 times 0.914~{rm mm}^{2}$. At the supply voltage of 1.0 V, the total power consumption is 3.56 mW. The free-running frequency of the QVCO is tunable from 5.43 GHz to 5.92 GHz as the tuning voltage is varied from 0.0 V to 1.0 V. The measured phase noise at 1 MHz frequency offset is $-117.98~{rm dBc/Hz}$ at the oscillation frequency of 5.5 GHz and the figure of merit (FOM) of the proposed QVCO is $-187.27~{rm dBc/Hz}$.   相似文献   

2.
A 3.3 GHz CMOS quadrature voltage-controlled oscillator (QVCO) with very low phase noise is presented. The back-to-back series varactor configuration is employed in the LC tank for minimizing the AM-to-PM noise conversion. The backgate coupling for quadrature phase inter-locking further eliminates the noise contribution from coupling transistors and also reduces power consumption. The implemented QVCO in 0.18 $mu{rm m}$ CMOS technology achieved very low phase noise of ${- 133}~{rm dBc}/{rm Hz}$ at 1 MHz offset, where the total power consumption is 4.4 mW from a 1.0 V supply. The chip has a very high FOM of ${- 196.6}~{rm dBc}/{rm Hz}$.   相似文献   

3.
Analysis and Design of a Wide-Tuning-Range VCO With Quadrature Outputs   总被引:1,自引:0,他引:1  
A quadrature voltage-controlled oscillator (QVCO) with a wide tuning range is proposed and implemented in the TSMC 0.18- $mu{rm m}$ CMOS process. The said QVCO uses a cross-coupled structure and a current-reuse technology to produce the quadrature signal and to save power consumption and area, respectively. Based on our measurement, the phase noise with 1-MHz offset from the carrier frequency of 3.6 GHz is $-$ 114 dBc/Hz and the proposed QVCO has a wide-band tuning range of 3.6–4.9 GHz. Also, the maximal phase error and power imbalance are less than 5$^{circ}$ and 1.5 dB, respectively, and the power consumption is 8 mW at 2-V power supply voltage.   相似文献   

4.
A new differential voltage-controlled oscillator (VCO) is designed and implemented in a 0.13 $mu{rm m}$ CMOS 1P8M process. The designed circuit topology is an all nMOS LC-tank Clapp-VCO using a series-tuned resonator. At the supply voltage of 0.9 V, the output phase noise of the VCO is $-$110.5 dBc/Hz at 1 MHz offset frequency from the carrier frequency of 18.78 GHz, and the figure of merit is $-$188.67 dBc/Hz. The core power consumption is 5.4 mW. Tuning range is about 3.43 GHz, from 18.79 to 22.22 GHz, while the control voltage was tuned from 0 to 1.3 V.   相似文献   

5.
A 0.18 $mu$ m CMOS quadrature voltage-controlled oscillator with an extremely-low phase noise is presented. The excellent phase noise performance is accomplished by integration of the back-gate quadrature phase coupling and source resistive degeneration techniques into a complementary oscillator topology. The measured phase noise is as low as ${-}133$ dBc/Hz at 1 MHz offset from 3.01 GHz. The output phase imbalance is less than 1$^{circ}$ . The output power is $-1.25{pm} 0.5$ dBm and harmonic suppression is greater than 30.8 dBc. The oscillator core consumes 5.38 mA from a 1.5 V power supply. This QVCO achieves the highest figure-of-merit of ${-}193.5$ dBc/Hz.   相似文献   

6.
This letter presents an ultra-low voltage quadrature voltage-controlled oscillator (QVCO). The LC-tank QVCO consists of two low-voltage voltage-controlled oscillators (VCOs) with the body dc biased at the drain bias through a resistor. The superharmonic and back-gate coupling techniques are used to couple two differential VCOs to run in quadrature. The proposed CMOS QVCO has been implemented with the UMC 90 nm CMOS technology and the die area is 0.827 $, times ,$0.913 mm $^{2}$. At the supply voltage of 0.22 V, the total power consumption is 0.33 mW. The free-running frequency of the QVCO is tunable from 3.42 to 3.60 GHz as the tuning voltage is varied from 0.0 to 0.3 V. The measured phase noise at 1 MHz offset is ${-}112.97$ dBc/Hz at the oscillation frequency of 3.55 GHz and the figure of merit (FOM) of the proposed QVCO is about ${-}188.79$ dBc/Hz.   相似文献   

7.
A 5-GHz dual-path integer-$N$ Type-II phase-locked loop (PLL) uses an LC voltage-controlled oscillator and softly switched varactors in an overlapped digitally controlled integral path to allow a large fine-tuning range of approximately 160 MHz while realizing a low susceptibility to noise and spurs by using a low $K_{rm VCO}$ of 3.2 MHz/V. The reference spur level is less than $-$70 dBc with a 1-MHz reference frequency and a total loop-filter capacitance of 26 pF. The measured phase noise is $-$75 and $-$115 dBc/Hz at 10-kHz and 1-MHz offsets, respectively, using a loop bandwidth of approximately 30 kHz. This 0.25-${hbox{mm}}^{2}$ PLL is fabricated in a 90-nm digital CMOS process and consumes 11 mW from a 1.2-V supply.   相似文献   

8.
A wide band CMOS LC-tank voltage controlled oscillator (VCO) with small VCO gain $(K_{VCO})$ variation was developed. For small $K_{VCO}$ variation, serial capacitor bank was added to the LC-tank with parallel capacitor array. Implemented in a 0.18 $mu{rm m}$ CMOS RF technology, the proposed VCO can be tuned from 4.39 GHz to 5.26 GHz with the VCO gain variation less than 9.56%. While consuming 3.5 mA from a 1.8 V supply, the VCO has $-$ 113.65 dBc/Hz phase noise at 1 MHz offset from the carrier.   相似文献   

9.
This letter presents the microwave performance of a sub-100 $mu{rm W}$ Ku-band differential-mode resonant tunneling diode (RTD)-based voltage controlled oscillator (VCO) with an extremely low power consumption of 87 $mu{rm W}$ using an InP-based RTD/HBT MMIC technology. In order to achieve the extremely low-power Ku-band RTD VCO, the device size of RTD is scaled down to $0.6times 0.6 mu{rm m}^{2}$. The obtained dc power consumption of 87 $mu{rm W}$ is found to be only 1/18 of the conventional-type MMIC VCOs reported in the Ku-band. The fabricated RTD VCO has a phase noise of $-$100.3 dBc/Hz at 1 MHz offset frequency and a tuning range of 140 MHz with the figure-of-merit (FOM) of $-$194.3 dBc/Hz.   相似文献   

10.
A 47 GHz $LC$ cross-coupled voltage controlled oscillator (VCO) employing the high-$Q$ island-gate varactor (IGV) based on a 0.13 $mu{rm m}$ RFCMOS technology is reported in this work. To verify the improvement in the phase noise, two otherwise identical VCOs, each with an IGV and a conventional multi-finger varactor, were fabricated and the phase noise performance was compared. With $V_{DD}$ of 1.2 V and core power consumption of 3.86 mW, the VCOs with the IGV and the multi-finger varactor have a phase noise of $-$95.4 dBc/Hz and $-$91.4 dBc/Hz respectively, at 1 MHz offset, verifying the phase noise reduction with the introduction of the high-$Q$ IGV. The VCO with IGV exhibited an output power of around $-$15 dBm, leading to a FoM of $-$182.9 dBc/Hz and a tuning range of 3.35% (45.69 to 47.22 GHz).   相似文献   

11.
A 0.55 V supply voltage fourth-order low-pass continuous-time filter is presented. The low-voltage operating point is achieved by an improved bias circuit that uses different opamp input and output common-mode voltages. The fourth-order filter architecture is composed by two Active- ${rm G}_{rm m}{-}{rm RC}$ biquadratic cells, which use a single opamp per-cell with a unity-gain-bandwidth comparable to the filter cut-off frequency. The $-$ 3 dB filter frequency is 12 MHz and this is higher than any other low-voltage continuous-time filter cut-off frequency. The $-$3 dB frequency can be adjusted by means of a digitally-controlled capacitance array. In a standard 0.13 $mu{rm m}$ CMOS technology with ${V}_{THN}approx 0.25 {rm V}$ and ${V}_{THP}approx 0.3 {rm V}$, the filter operates with a supply voltage as low as 0.55 V. The filter $({rm total} {rm area}=0.47 {rm mm}^{2})$ consumes 3.4 mW. A 8 dBm-in-band IIP3 and a 13.3 dBm-out-of-band IIP3 demonstrate the validity of the proposal.   相似文献   

12.
A 98/196 GHz low phase noise voltage controlled oscillator (VCO) with a fundamental/push-push mode selector using a 90 nm CMOS process is presented in this letter. An innovative concept of the VCO with the mode selector is proposed to switch the fundamental or second harmonic to the RF output. The VCO demonstrates a fundamental frequency of up to 98 GHz with an output power of greater than $-8~{rm dBm}$. The phase noise of the VCO is better than $-100.8~{rm dBc}/{rm Hz}$ at 1 MHz offset frequency, and its figure-of-merit is better than $-186~{rm dBc}/{rm Hz}$. Moreover, the output frequency of the work is up to 196 GHz with a fundamental suppression of greater than $-30~{rm dBc}$ as the VCO is operated in push-push mode.   相似文献   

13.
The design of a CMOS 22–29-GHz pulse-radar receiver (RX) front-end for ultra-wideband automotive radar sensors is presented. The chip includes a low-noise amplifier, in-phase/quadrature mixers, a quadrature voltage-controlled oscillator (QVCO), pulse formers, and baseband variable-gain amplifiers. Fabricated in a 0.18-$mu{hbox{m}}$ CMOS process, the RX front-end chip occupies a die area of 3 ${hbox{mm}}^{2}$. On-wafer measurements show a conversion gain of 35–38.1 dB, a noise figure of 5.5–7.4 dB, and an input return loss less than $-$14.5 dB in the 22–29-GHz automotive radar band. The phase noise of the constituent QVCO is $-$107 dBc/Hz at 1-MHz offset from a center frequency of 26.5 GHz. The total dc power dissipation of the RX including output buffers is 131 mW.   相似文献   

14.
This paper presents the design and the characterization of a CMOS avalanche photodiode (APD) working as an optoelectronic mixer. The $hbox{P}^{+}hbox{N}$ photodiode has been implemented in a commercial 0.35-$muhbox{m}$ CMOS technology after optimization with SILVACO. The surface of the active region is $ hbox{3.78} cdot hbox{10}^{-3} hbox{cm}^{2}$. An efficient guard-ring structure has been created using the lateral diffusion of two n-well regions separated by a gap of 1.2 $mu hbox{m}$. When biased at $-$2 V, the best responsitivity $S_{lambda ,{rm APD}} = hbox{0.11} hbox{A/W}$ is obtained at $lambda = hbox{500} hbox{nm}$. This value can easily be improved by using an antireflection coating. At $lambda = hbox{472} hbox{nm}$, the internal gain is about 75 at $-$6 V and 157 at $-$7 V. When biased at $-$6 V, the APD achieves a dark current of 128 $muhbox{A} cdot hbox{mm}^{-2}$ and an excess noise factor $F = hbox{20}$ . Then, the APD is successfully used as an optoelectronic mixer to improve the signal-to-noise ratio of a low-voltage embedded phase-shift laser rangefinder.   相似文献   

15.
This letter makes a comparison between Q-band 0.15 $mu{rm m}$ pseudomorphic high electron mobility transistor (pHEMT) and metamorphic high electron mobility transistor (mHEMT) stacked-LO subharmonic upconversion mixers in terms of gain, isolation and linearity. In general, a 0.15 $mu{rm m}$ mHEMT device has a higher transconductance and cutoff frequency than a 0.15 $mu{rm m}$ pHEMT does. Thus, the conversion gain of the mHEMT is higher than that of the pHEMT in the active Gilbert mixer design. The Q-band stacked-LO subharmonic upconversion mixers using the pHEMT and mHEMT technologies have conversion gain of $-$7.1 dB and $-$0.2 dB, respectively. The pHEMT upconversion mixer has an ${rm OIP}_{3}$ of $-$12 dBm and an ${rm OP}_{1 {rm dB}}$ of $-$24 dBm, while the mHEMT one shows a 4 dB improvement on linearity for the difference between the ${rm OIP}_{3}$ and ${rm OP}_{1 {rm dB}}$. Both the chip sizes are the same at 1.3 mm $times$ 0.9 mm.   相似文献   

16.
In this letter, we present the measured performance of a differential Vackar voltage-controlled oscillator (VCO) implemented for the first time in CMOS technology. The Vackar VCO provided good isolation between the LC tank and the loss-compensating active circuit; thus, excellent frequency stability was achieved over the frequency tuning range. The Vackar VCO was implemented using nMOS transistors and an LC tank in a 0.18 $mu{rm m}$ RF CMOS process. The oscillation frequency ranged from 4.85 to 4.93 GHz. The measured phase noise of the Vackar VCO at 1 MHz offset was $-124.9 ~{rm dB}/{rm Hz}$ at 4.9 GHz with a figure-of-merit (FOM) of $-188 ~{rm dBc}/{rm Hz}$.   相似文献   

17.
We have demonstrated p-type field effect transistors (p-FETs) devices using a TaCNO metal gate for the first time. These p-FETs have threshold voltage values of $-$ 0.4 and $-$ 0.25 V for HfSiON and HfSiO gate dielectrics, respectively, with equivalent oxide thickness of 1.6–1.7 nm. The TaCNO metal shows a high effective work function (eWF) of 4.89 eV on thick $hbox{SiO}_{2}$ interface layer, although the eWF rolls off with reducing EOT. Excellent transistor characteristics are achieved, with $I_{rm on}$ of $hbox{375} muhbox{A}/muhbox{m}$ at $I_{rm off} = hbox{60 nA}$, for $V_{rm dd} = hbox{1.1} hbox{V}$ .   相似文献   

18.
A Low Voltage Mixer With Improved Noise Figure   总被引:2,自引:0,他引:2  
A 5.2 GHz low voltage mixer with improved noise figure using TSMC 0.18 $mu$m CMOS technology is presented in this letter. This mixer utilizes current reuse and ac-coupled folded switching to achieve low supply voltage. The noise figure of the mixer is strongly influenced by flicker noise. A resonating inductor is implemented for tuning out the parasitic components, which not only can improve noise figure but also enhance conversion gain. A low voltage mixer without resonating technique has also been fabricated and measured for comparison. Simulated results reveal that flicker corner frequency is lowered. The measured results show 4.5 dB conversion gain enhancement and 4 dB reduction of noise figure. The down-conversion mixer with resonating inductor achieves 5.8 dB conversion gain, ${-}16$ dBm ${rm P}_{{rm 1dB}},$ ${-}6$ dBm ${rm IIP}_{3}$ at power consumption of 3.8 mW and 1 V supply voltage.   相似文献   

19.
A four-element phased-array front-end receiver based on 4-bit RF phase shifters is demonstrated in a standard 0.18- $mu{{hbox{m}}}$ SiGe BiCMOS technology for $Q$-band (30–50 GHz) satellite communications and radar applications. The phased-array receiver uses a corporate-feed approach with on-chip Wilkinson power combiners, and shows a power gain of 10.4 dB with an ${rm IIP}_{3}$ of $-$13.8 dBm per element at 38.5 GHz and a 3-dB gain bandwidth of 32.8–44 GHz. The rms gain and phase errors are $leq$1.2 dB and $leq {hbox{8.7}}^{circ}$ for all 4-bit phase states at 30–50 GHz. The beamformer also results in $leq$ 0.4 dB of rms gain mismatch and $leq {hbox{2}}^{circ}$ of rms phase mismatch between the four channels. The channel-to-channel isolation is better than $-$35 dB at 30–50 GHz. The chip consumes 118 mA from a 5-V supply voltage and overall chip size is ${hbox{1.4}}times {hbox{1.7}} {{hbox{mm}}}^{2}$ including all pads and CMOS control electronics.   相似文献   

20.
A low-power frequency tripler is designed by using the sub-harmonic mixer configuration for K-band applications. The proposed circuit features quadrature signal generation, applicable to LO signal synthesis in millimeter-wave wireless transceivers. It achieves conversion gain of $-$5.7 dB at the output frequency of 21 GHz. Implemented in a 0.18 $mu{rm m}$ CMOS technology, the circuit consumes power of 7.5 mW with 1.5 V supply voltage. The entire die occupies an area of $1000times 1050 mu{rm m}^{2}$.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号