首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨利君  袁芳  龚正  石寅  陈治明 《半导体学报》2011,32(12):125008-5
A low power mixed signal DC offset calibration (DCOC) circuit for direct conversion receiver applications is designed. The proposed DCOC circuit features low power consumption, fast settling time and a small die area by avoiding the trade-off between loop response time and the high pass frequency of the DCOC servo loop in conventional analog DCOC systems. By applying the proposed DC offset correction circuitry, the output residue DC offset voltages are reduced to less than 38 mV and the DCOC loop settling time is less than 100 μs. The DCOC chip is fabricated in a standard 0.13-μm CMOS technology and drains only 196 μA from a 1.2-V power supply with its chip area of only 0.372 × 0.419 mm2.  相似文献   

2.
A novel CMOS atto-ampere current mirror (AACM) is proposed which reaches the minimum yet reported current range of 0.4 aA. Operation of this circuit is based on the source voltage modulation instead of the conventionally used gate voltage modulation which interestingly prevents usage of commonly required voltage shifting in those circuits. The proposed circuit has a simple structure prohibiting large chip area consumption which consumes extremely low power of 1.5 μW. It is thus the best choice for ultra low power low voltage (ULPLV) applications. By using a very simple frequency compensation technique, its bandwidth is widened to 15.8 kHz. Simulation results in SMIC (Semiconductor Manufacturing International Corporation) 0.18 μm CMOS technology with Hspice are presented to demonstrate the validation of the proposed current mirror.  相似文献   

3.
盛志雄  于峰崎 《半导体学报》2014,35(9):095006-5
This paper presents the design and implementation of a current self-adjusted VCO with low power consumption. In the proposed VCO, a bottom PMOS current source instead of a top one is adopted to decrease the tail noise. A current self-adjusted technique without additional external control signals is taken to ensure the VCO starts up in the whole band while keeping the power consumption relatively low. Meanwhile, the phase noise of the VCO at the low frequency (high Cvar) can be reduced by the technique. The circuit is implemented in 0.18 μm CMOS technology. The proposed VCO exhibits low power consumption of 〈1.6 mW at a 1.5 V supply voltage and a tuning range from 11.79 to 12.53 GHz. The measured phase noise at 1 MHz offset from the frequency 11.79 GHz is-104.7 dBc/Hz, and the corresponding FOM is -184.2 dBc/Hz.  相似文献   

4.
杨利君  袁芳  龚正  石寅  陈治明 《半导体学报》2011,32(12):134-138
A low power mixed signal DC offset calibration(DCOC) circuit for direct conversion receiver applications is designed.The proposed DCOC circuit features low power consumption,fast settling time and a small die area by avoiding the trade-off between loop response time and the high pass frequency of the DCOC servo loop in conventional analog DCOC systems.By applying the proposed DC offset correction circuitry,the output residue DC offset voltages are reduced to less than 38 mV and the DCOC loop settling time is less than 100μs.The DCOC chip is fabricated in a standard 0.13-μm CMOS technology and drains only 196μA from a 1.2-V power supply with its chip area of only 0.372×0.419 mm~2.  相似文献   

5.
This paper presents an integrated complementary metal oxide semiconductor (CMOS) low power low noise amplifier (LNA) for global positioning system (GPS) receivers.To achieve low power dissipation,the MOS transistors in the proposed LNA are biased in moderate inversion region.It is implemented by SMIC 180 nm 1P6M CMOS process.The experiment results show that a gain of 12.14 dB@1.57 GHz is achieved with low noise figure (NF) of 1.62 dB.The power consumption of the circuit is 1.5 mW at supply voltage of 1.8 V.The ratio of gain to dc power consumption is 8 dB/mW.The size of the LNA is only 980μm× 720μm including the pads.  相似文献   

6.
江金光  李森 《半导体学报》2014,35(11):115010-7
A single lithium-ion battery protection circuit with high reliability and low power consumption is proposed.The protection circuit has high reliability because the voltage and current of the battery are controlled in a safe range.The protection circuit can immediately activate a protective function when the voltage and current of the battery are beyond the safe range.In order to reduce the circuit’s power consumption,a sleep state control circuit is developed.Additionally,the output frequency of the ring oscillation can be adjusted continuously and precisely by the charging capacitors and the constant-current source.The proposed protection circuit is fabricated in a 0.5 m mixed-signal CMOS process.The measured reference voltage is 1.19 V,the overvoltage is 4.2 V and the undervoltage is 2.2 V.The total power is about 9 W.  相似文献   

7.
To meet the accuracy requirement for the bandgap voltage reference by the increasing data conversion precision of integrated circuits, a high-order curvature-compensated bandgap voltage reference is presented employing the characteristic of bipolar transistor current gain exponentially changing with temperature variations. In addition, an over-temperature protection circuit with a thermal hysteresis function to prevent thermal oscillation is proposed. Based on the CSMC 0.5 μ m 20 V BCD process, the designed circuit is implemented; the active die area is 0.17 × 0.20 mm2. Simulation and testing results show that the temperature coefficient is 13.7 ppm/K with temperature ranging from –40 to 150 ℃, the power supply rejection ratio is –98.2 dB, the line regulation is 0.3 mV/V, and the power consumption is only 0.38 mW. The proposed bandgap voltage reference has good characteristics such as small area, low power consumption, good temperature stability, high power supply rejection ratio, as well as low line regulation. This circuit can effectively prevent thermal oscillation and is suitable for on-chip voltage reference in high precision analog, digital and mixed systems.  相似文献   

8.
An area-efficient CMOS 1-MS/s 10-bit charge-redistribution SAR ADC for battery voltage measurement in a SoC chip is proposed. A new DAC architecture presents the benefits of a low power approach without applying the common mode voltage. The threshold inverter quantizer(TIQ)-based CMOS Inverter is used as a comparator in the ADC to avoid static power consumption which is attractive in battery-supply application. Sixteen level-up shifters aim at converting the ultra low core voltage control signals to the higher voltage level analog circuit in a 55 nm CMOS process. The whole ADC power consumption is 2.5 mW with a maximum input capacitance of 12 pF in the sampling mode. The active area of the proposed ADC is 0.0462 mm2 and it achieves the SFDR and ENOB of 65.6917 dB and 9.8726 bits respectively with an input frequency of 200 kHz at 1 MS/s sampling rate.  相似文献   

9.
A 1-V third order one-bit continuous-time(CT) EA modulator is presented. Designed in the SMIC mixedsignal 0.13-μm CMOS process, the modulator utilizes active RC integrators to implement the loop filter. An efficient circuit design methodology for the CT ZA modulator is proposed and verified. Low power dissipation is achieved through the use of two-stage class A/AB amplifiers. The presented modulator achieves 81.4-dB SNDR and 85-dB dynamic range in a 20-kHz bandwidth with an over sampling ratio of 128. The total power consumption of the modulator is only 60 μW from a 1-V power supply and the prototype occupies an active area of 0.12 mm^2.  相似文献   

10.
A low power high gain gain-controlled LNAC+mixer for GNSS receivers is reported. The high gain LNA is realized with a current source load.Its gain-controlled ability is achieved using a programmable bias circuit. Taking advantage of the high gain LNA, a high noise figure passive mixer is adopted. With the passive mixer, low power consumption and high voltage gain of the LNACmixer are achieved. To fully investigate the performance of this circuit, comparisons between a conventional LNAC+mixer, a previous low power LNAC+mixer, and the proposed LNAC+mixer are presented. The circuit is implemented in 0.18 m mixed-signal CMOS technology. A 3.8 dB noise figure, an overall 45 dB converge gain and a 10 dB controlled gain range of the two stages are measured. The chip occupies 0.24 mm2and consumes 2 mA current under 1.8 V supply.  相似文献   

11.
贾晨  郝文瀚  陈虹  张春  王志华 《半导体学报》2009,30(7):075014-5
We propose a bandgap reference, which works in sub-threshold regions to the reduce power consumption in applications such as those in energy harvesting systems that stimulate the development of power management for low power consumption applications.Measurements shows that the supply current of the proposed bandgap reference is only 6.87 μA, including a voltage buffer consuming 3.6 μA of supply current, when the supply voltage is 5 V.The supply voltage can vary from 3 to 11 V and the line regulation of the proposed bandgap reference output voltage is 0.875 mV/V at room temperature.The temperature coefficiency is 88.9 ppm from 10 to 100° C when the supply voltage is 5 V.  相似文献   

12.
冯鹏  章琦  吴南健 《半导体学报》2011,32(11):139-147
This paper presents a passive EPC Gen-2 UHF RFID tag chip with a dual-resolution temperature sensor. The chip tag integrates a temperature sensor,an RF/analog front-end circuit,an NVM memory and a digital baseband in a standard CMOS process.The sensor with a low power sigma-delta(ΣΔ) ADC is designed to operate in low and high resolution modes.It can not only achieve the target accuracy but also reduce the power consumption and the sensing time.A CMOS-only RF rectifier and a single-poly non-volatile memory(NVM) are designed to realize a low cost tag chip.The 192-bit-N VM tag chip with an area of 1 mm~2 is implemented in a 0.18-μm standard CMOS process.The sensitivity of the tag is -10.7 dBm/-8.4 dBm when the sensor is disabled/enabled.It achieves a maximum reading/sensing distance of 4 m/3.1 m at 2 W EIRP.The inaccuracy of the sensor is -0.6℃/0.5℃(-1.0℃/1.2℃) in the operating range from 5 to 15℃in high resolution mode(-30 to 50℃in low resolution mode).The resolution of the sensor achieves 0.02℃(0.18℃) in high(low) resolution mode.  相似文献   

13.
A novel Power-on-reset (POR) circuit is proposed with ultra-low steady-state current consumption. A band=gap voltage eomparator is used to generate a stable pull-up voltage. To eliminate the large current consumptions of the analog part, a power switch is adopted to cut the supply of band-gap voltage comparator, which gained ultra-low current consumption in steady-state after the POR rest process completed. The state of POR circuit is maintained through a state latch circuit. The whole cir- cuit was designed and implemented in 65rim C1V[OS tech- nology with an active area of 120ttm*160~m. Experimental results show that it has a steady pull=up voltage of 0.69V and a brown-out voltage of 0.49V under a 1.2V supply voltage rising from 0V, plus its steady-state current is only 9hA. The proposed circuit is suitable to be integrated in system on chip to provide a reliable POR signal.  相似文献   

14.
A novel current-mode voltage reference circuit which is capable of generating sub-1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature compensation is achieved by utilizing the non-linear behavior of gate coupling coefficient to compensate non-linear temperature dependence of base-emitter voltage. We have also utilized the developments in CMOS process to reduce power and area consumption. The proposed voltage reference is analyzed theoretically and compared with other existing methods. The circuit is designed and simulated in 180 nm mixed-mode CMOS UMC technology which gives a reference level of 246 mV. The minimum required supply voltage is 1 V with maximum current drawn of 9.24 μA. A temperature coefficient of 9 ppm/℃ is achieved over -25 to 125 ℃ temperature range. The reference voltage varies by ±11 mV across process corners. The reference circuit shows the line sensitivity of 0.9 mV/V with area consumption of 100 × 110 μm2.  相似文献   

15.
A low power high gain gain-controlled LNA + mixer for GNSS receivers is reported. The high gain LNA is realized with a current source load. Its gain-controlled ability is achieved using a programmable bias circuit. Taking advantage of the high gain LNA, a high noise figure passive mixer is adopted. With the passive mixer, low power consumption and high voltage gain of the LNA + mixer are achieved. To fully investigate the performance of this circuit, comparisons between a conventional LNA + mixer, a previous low power LNA + mixer, and the proposed LNA + mixer are presented. The circuit is implemented in 0.18 #m mixed-signal CMOS technology. A 3.8 dB noise figure, an overall 45 dB converge gain and a 10 dB controlled gain range of the two stages are measured. The chip occupies 0.24 mm2 and consumes 2 mA current under 1.8 V supply.  相似文献   

16.
A kind of pseudo Gray code presentation of test patterns based on accumulation generators is presented and a low power test scheme is proposed to test computational function modules with contiguous subspace in very large scale integration (VLSI), especially in digital signal processors (DSP). If test patterns from accumulators for the modules are encoded in the pseudo Gray code presentation, the switching activities of the modules are reduced, and the decrease of the test power consumption is resulted in. Results of experimentation based on FPGA show that the test approach can reduce dynamic power consumption by an average of 17.40% for 8-bit ripple carry adder consisting of 3-2 counters. Then implementation of the low power test in hardware is exploited. Because of the reuse of adders, introduction of additional XOR logic gates is avoided successfully. The design minimizes additional hardware overhead for test and needs no adjustment of circuit structure. The low power test can detect any combinational stuck-at fault within the basic building block without any degradation of original circuit performance.  相似文献   

17.
A high injection, large dynamic range, stable detector bias, small area and low power consumption CMOS readout circuit with background current suppression and correlated double sampling (CDS) for a high-resolution infrared focal plane array applications is proposed. The detector bias error in this structure is less than 0.1 mV. The input resistance is ideally zero, which is important to obtain high injection efficiency. Unit-cell occupies 10 μm× 15 μm area and consumes less than 0.4 mW power. Charge storage...  相似文献   

18.
周可基  汪鹏君  温亮 《半导体学报》2016,37(4):045002-7
A power balance static random-access memory(SRAM) for resistance to differential power analysis(DPA) is proposed. In the proposed design, the switch power consumption and short-circuit power consumption are balanced by discharging and pre-charging the key nodes of the output circuit and adding an additional shortcircuit current path. Thus, the power consumption is constant in every read cycle. As a result, the DPA-resistant ability of the SRAM is improved. In 65 nm CMOS technology, the power balance SRAM is fully custom designed with a layout area of 5863.6 μm~2.The post-simulation results show that the normalized energy deviation(NED) and normalized standard deviation(NSD) are 0.099% and 0.04%, respectively. Compared to existing power balance circuits, the power balance ability of the proposed SRAM has improved 53%.  相似文献   

19.
正A current-mode front-end circuit with low voltage and low power for analog hearing aids is presented. The circuit consists of a current-mode AGC(automatic gain control) and a current-mode adaptive filter.Compared with its conventional voltage-mode counterparts,the proposed front-end circuit has the identified features of frequency compensation based on the state space theory and continuous gain with an exponential characteristic.The frequency compensation which appears only in the DSP unit of the digital hearing aid can upgrade the performance of the analog hearing aid in the field of low-frequency hearing loss.The continuous gain should meet the requirement of any input amplitude level,while its exponential characteristic leads to a large input dynamic range in accordance with the dB SPL(sound pressure level).Furthermore,the front-end circuit also provides a discrete knee point and discrete compression ratio to allow for high calibration flexibility.These features can accommodate users whose ears have different pain thresholds.Taking advantage of the current-mode technique,the MOS transistors work in the subthreshold region so that the quiescent current is small.Moreover,the input current can be compressed to a low voltage signal for processing according to the compression principle from the current-domain to the voltage-domain.Therefore,the objective of low voltage and low power(48μW at 1.4 V) can be easily achieved in a high threshold-voltage CMOS process of 0.35μm(V_(TON) + |V_(TOP)|≈1.35 V).The THD is below -45 dB.The fabricated chip only occupies the area of 1×0.5 mm~2 and 1×1 mm~2.  相似文献   

20.
A 2.4 GHz high efficiency radio frequency(RF) transmitter for wireless body area network(WBAN) in medical applications is presented in this paper. The transmitter architecture with high energy efficiency is proposed to achieve a high data rate with low power consumption. In conventional transmitters,the oscillator and power amplifier are turned off when the transmitter sends 0. The required time for turning oscillator ON/OFF is longer than the other blocks of the transmitter. In the proposed transmitter, the low power oscillator is on all the time while the power amplifier and modulator are turned off when "0" data is sent. The transmitter consumes 3.2 mW at 0.5 dBm output by 285 Mbps data rate and the energy consumption per transmitted bit with 0.5 dBm output power is 10pJ/(bitmW). The proposed transmitter was designed in0.18 μm CMOS technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号