首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reliable mathematical model of urea-water-solution(UWS) droplet evaporation and thermolysis is developed.The well known Abramzon–Sirignano evaporation model is corrected by introducing an adjustment coefficient considering the different evaporation behaviors of UWS droplet at different ambient temperatures. A semidetailed kinetic scheme of urea thermolysis is developed based on Ebrahimian's work. Sequentially, the evaporation characteristics, decomposition efficiency of a single UWS droplet and deposit formation are simulated. As a result, the relation of evaporation time, relative velocity, exhaust temperature and droplet initial diameter is presented. Synchronously, it indicates that temperature is the decisive factor for urea thermolysis. Different temperatures result in different deposit components, and deposit yield is significantly influenced by temperature and decomposition time. The current work can provide guidance for designing urea injection strategy of SCR systems.  相似文献   

2.
The evaporation behavior of urea‐water‐solution (UWS) droplet was investigated for application to urea‐selective catalytic reduction (SCR) systems. A number of experiments were performed with single UWS droplet suspended on the tip of a fine quartz fiber. To cover the temperature range of real‐world diesel exhausts, droplet ambient temperature was regulated from 373 to 873 K using an electrical furnace. As a result of this study, UWS droplet revealed different evaporation characteristics depending on its ambient temperature. At high temperatures, it showed quite complicated behaviors such as bubble formation, distortion, and partial rupture after a linear D2‐law period. However, as temperature decreases, these phenomena became weak and finally disappeared. Also, droplet diminishment coefficients were extracted from transient evaporation histories for various ambient temperatures, which yields a quantitative evaluation on evaporation characteristics of UWS droplet as well as provides valuable empirical data required for modeling or simulation works on urea‐SCR systems. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

3.
This work is aimed to develop a multicomponent evaporation model for droplets of urea‐water solution (UWS) and a thermal decomposition model of urea for automotive exhausts by using the selective catalytic reduction systems. In the multicomponent evaporation model, the influence of urea on the UWS evaporation is taken into account using a nonrandom two‐liquid activity model. The thermal decomposition model is based on a semidetailed kinetic scheme accounting not only for the production of ammonia (NH3) and isocyanic acid but also for the formation of heavier solid by‐products (biuret, cyanuric acid, and ammelide). This kinetics model has been validated against gaseous data as well as solid‐phase concentration profiles obtained by Lundstroem et al. (2009) and Schaber et al. (2004). Both models have been implemented in IFP‐C3D industrial software to simulate UWS droplet evaporation and decomposition as well as the formation of solid by‐products. It has been shown that the presence of the urea solute has a small influence on the water evaporation rate, but its effect on the UWS temperature is significant. In addition, the contributions of hydrolysis and thermolysis to urea decomposition have been assessed. Finally, the impacts of the heating rate as well as gas‐phase chemistry on urea decomposition pathways have been studied in detail. It has been shown that reducing the heating rate of the UWS causes the extent of the polymerization to decrease because of the higher activation energy. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

4.
Urea water solution (UWS) droplet evaporation characteristics directly affect the conversion and distribution of NH3 in urea based selective catalytic reduction (SCR) system. The UWS droplet temperature is very difficult to be measured directly. Whereas, this piece of research work involves the measurement of droplet temperature by an Omega‐K type thermocouple of 127 µm diameter. According to the temperature changes of the droplet, the evaporation process can be divided into four steps. Droplets heat and mass transfer processes are derived theoretically at high exhaust temperature. The UWS droplet has been placed in a continuous observation test system to investigate its diameter and temperature variations in the aforementioned four steps. The results shown that, this unique method of four steps analysis has more explicitly and better described the UWS evaporation process, hence establishing the basis for the subsequent detailed simulation and monitoring. © 2015 American Institute of Chemical Engineers AIChE J, 62: 880–890, 2016  相似文献   

5.
A three-dimensional CFD model of SCR converter with detailed chemistry is developed. The model is used to study the effects of radial variation in inlet ammonia profile on SCR emission performance at different temperatures. The model shows that radial variation in inlet ammonia concentration affects the SCR performance in the operating range of 200–400 °C. In automotive SCR systems, ammonia is non-uniformly distributed due to evaporation/reaction of injected urea, and using a 1D model or a 3D model with flat ammonia profile at inlet for these conditions can result in erroneous emission prediction. The 3D SCR model is also used to study the effect of converter design parameters like inlet cone angle and monolith cell density on the SCR performance for a non-uniform ammonia concentration profile at the inlet. The performance of SCR is evaluated using DeNO x efficiency and ammonia slip.  相似文献   

6.
The current work aims to develop a reliable theoretical model capable of simulating the depletion process of urea‐water‐solution (UWS) droplets injected in a hot exhaust stream as experienced in an automotive urea‐based selective catalytic reduction system. A modified multicomponent vaporization model is presented and implemented in the current study to simulate the behavior of UWS droplet in heated environment. Although water depletion is modeled as a vaporization process, urea depletion is modeled using two different approaches: (i) vaporization and (ii) direct thermal decomposition. The suitability of both depletion approaches is assessed in the current study by comparison with experimental data of the decay of a single UWS droplet in a quiescent heated environment. The decay rate of UWS droplet is accurately predicted with the multicomponent vaporization model. The possibility of internal gasification is demonstrated. Based on the complex decomposition behavior of urea, the current study proposes a decomposition mechanism for UWS droplet. The suitability of implementing the rapid mixing approach is assessed through comparison with the diffusion limit approach at various operating conditions and initial UWS droplet sizes. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

7.
在660MW超临界W火焰锅炉上开展了工业试验,研究了尿素法选择性非催化还原脱硝(SNCR)投运对锅炉热效率、NOx排放、SCR入口烟道截面NOx分布及炉内烟气温度的影响。结果表明:SNCR系统喷入炉内的水汽化吸热是导致锅炉热效率降低的主要原因,喷入炉内水流量增加1.0t/h,锅炉热效率降低约0.05个百分点;稀释水流量影响尿素溶液在炉内的雾化和分配效果,在尿素用量相同条件下适当增加稀释水流量,SNCR脱硝效率会显著提高;相对于试验负荷下约2400t/h的烟气流量,SNCR喷入炉内的尿素溶液流量相对较少(占0.2%~0.5%),因此,对炉内烟气温度影响并不明显。在一定范围内调整稀释水和尿素溶液流量对SCR入口烟道截面NOx分布的影响并不明显,但是过低的稀释水流量会影响炉内尿素混合效果,进而影响SCR入口NOx浓度在烟道截面深度方向上分布的均匀性。  相似文献   

8.
Understanding urea decomposition is critical to achieve highly efficient selective catalytic reduction (SCR). The urea decomposition process in an exhaust pipe and in Cu-zeolite and vanadia-SCR (V-SCR) was studied in engine test cells. The unconverted urea at the SCR inlet can be substantial at lower temperatures. HNCO and NH3 are two dominant products at the SCR inlet. Urea and HNCO continue to decompose in SCR catalysts, with a rate much faster than in the homogeneous stream. The HNCO hydrolysis process is extremely efficient in Cu-zeolite SCR and the abundant NH3 from urea overdosing can improve the NOx conversion efficiency. While for V-SCR, the HNCO hydrolysis reaction can become the rate-limiting step (especially after aging), abundant urea at low temperatures impairs NOx reduction.  相似文献   

9.
The behavior of droplets of urea-water-solution (UWS) evaporating under the influence of a hot stream of air was investigated experimentally, under temperatures ranging from 100°C to 400°C. The droplets were suspended on a glass microfiber to minimize the influence of heat conduction, through the fiber, on the evaporation rate of the droplet. The flow rate of air, under all experimental conditions, was measured and these data were used to estimate the average velocity of air around the droplet. Experiments were also conducted on droplets of pure water and the results were compared. The initial mass fraction of urea, in the solution, did not appear to have a significant effect on the evaporation constant, but it did affect a few essential aspects of the evaporation behavior. The evaporation of water droplets was in accordance with the d2 law at all temperatures, whereas the evaporation of UWS droplets was ambient-temperature dependent.  相似文献   

10.
柴琳  杨文哲  刘斌  陈爱强 《化工进展》2018,37(Z1):19-28
液滴蒸发过程是伴随着复杂变化但又没有统一且充分认知的的过程,是目前一个重要的研究热点,在许多科学应用中起到关键作用。本文介绍了液滴蒸发的历史研究过程,综述了3种不同类型液滴,即纯液滴、二元混合溶液液滴和聚合物溶液液滴蒸发过程的研究成果,分析了液滴蒸发过程中和蒸发结束后沉积物的影响因素,简述了液滴的研究成果在实际生活中的应用。现有研究表明,不同类型液滴的蒸发过程受到多种因素的影响,比如溶液中的纳米粒子、环境温度和压力等。这些因素还会影响到沉积物的图案和大小。目前,研究人员已经研究出典型的液滴蒸发过程(接触线固定和接触角固定模式),讨论出液滴蒸发基本理论。对一些常见的二元及多元溶液,研究人员已经发现它们与纯溶液蒸发过程的不同之处,并且已经在科学界进行了大量的研究及讨论,建立出数学模型。最后重点介绍了液滴蒸发在医学领域的研究成果、应用和未来发展的方向,比如通过生物液滴蒸发后的沉积物的纳米层,跟正常沉积物对比结果来检测疾病等。最后对液滴蒸发理论的现状、潜力和未来发展需求进行了总结和展望。  相似文献   

11.
蒸发式过冷水制冰中单个水滴的蒸发过冷特性   总被引:1,自引:1,他引:0       下载免费PDF全文
闫俊海  张小松 《化工学报》2012,63(11):3434-3439
为分析蒸发式过冷水制冰中单个水滴在此低温低湿空气环境中的蒸发特性,建立了水滴蒸发过冷过程的数理模型。通过悬挂水滴实验与模拟结果的对比,验证了模型的有效性。因此利用该数学模型预测微小直径水滴的蒸发特性是可行的。通过模拟计算获得了水滴初始直径、初始水温、空气温度、空气含湿量和空气流速对水滴蒸发过冷过程的影响。结果表明,水滴初始直径越小、温度越低或空气流速越大,水滴的冷却速率就越大,达到稳态时的过冷时间就越短。另外,通过降低空气温度或含湿量不仅提高了水滴的冷却速率,而且增加了水滴达到稳态时的过冷度。通过水滴蒸发过冷特性的分析,可为制冰系统的优化设计及提高系统制冰效率提供理论参考。  相似文献   

12.
盐水溶液的降压蒸发广泛应用于海水淡化和工业制盐等领域,因此研究盐水在降压过程中的蒸发特性具有重要意义,有助于解决我国水资源缺乏问题。本文通过数值模拟的方法研究了降压环境下盐水液滴蒸发析盐过程,获得了盐析质量和液滴温度随时间的变化。采用的工质为饱和盐水,液滴的初始温度分别为20℃、15℃、10℃;环境压力从0.1MPa降至2000~10000Pa。通过与实验数据相对比,验证了本文模型的有效性。通过该数学模型,分析了影响析盐率和液滴温度变化的主要因素。结果表明:液滴直径越大,在蒸发过程中其析盐率越高,但温度变化越慢;压降速率越快,液滴蒸发速率越快,析盐率越大,温度变化也越快;液滴初始温度越高,蒸发速率越快,液滴表面析盐率越高,但不同初始温度的盐水液滴,在蒸发过程中其最终温度趋于一致。  相似文献   

13.
M. Ikegami  G. Xu  S. Honma  D.L. Dietrich 《Fuel》2003,82(3):293-304
This report presents an investigation on the combustion of single droplets comprised of heavy oil and oil mixtures blending diesel light oil (LO) and a heavy oil residue (HOR). The tests were conducted in a microgravity facility that offered 10 s of free-fall time. Fine wire thermocouples supported the droplets, resulting in a measurement of droplet temperature history. Additional data were the droplet and flame size history. The results identified four distinctive burning stages between ignition and extinction for heavy oil (C class) and HOR-LO blends. They are, in succession, the start-up, inner evaporation, thermal decomposition (pyrolysis) and polymerization stages. The start-up stage denoted an initial transient period, where the LO components burned from the droplet surface and the droplet temperature increased rapidly. The latter three stages featured pronounced droplet swellings and contractions caused by fuel evaporation and decomposition inside the droplet. An evaporation temperature demarcated the start-up stage from the inner evaporation stage, and this temperature corresponded to a plateau in the temperature history of the droplet. Two additional temperatures, termed the decomposition and polymerization temperatures, indicated the ends of the evaporation and decomposition stages. These temperatures were similarly identified by plateaus or inflection points in the time-temperature diagram. The evaporation temperature gradually decreased with increasing the initial LO mass fraction in the droplet, whereas the other two temperatures were almost independent of the oil composition. All three temperatures increased with decreasing initial droplet diameter, but the dependence was very slight. Based on the results, the combustion of heavy oil droplets appears to be dominated by a distillation-like vaporization mechanism, because of the rapid mass transport within the droplets caused by the disruptive burning.  相似文献   

14.
Monodisperse monocomponent fuel droplet heating and evaporation   总被引:1,自引:0,他引:1  
The results of numerical and experimental studies of heating and evaporation of monodisperse acetone, ethanol, 3-pentanone, n-heptane, n-decane and n-dodecane droplets in an ambient air of fixed temperature and atmospheric pressure are reported. The numerical model took into account the finite thermal conductivity of droplets and recirculation inside them based on the effective thermal conductivity model and the analytical solution to the heat conduction equation inside droplets. The effects of interaction between droplets are taken into account based on the experimentally determined corrections to Nusselt and Sherwood numbers. It is pointed out that the interactions between droplets lead to noticeable reduction of their heating in the case of ethanol, 3-pentanone, n-heptane, n-decane and n-dodecane droplets, and reduction of their cooling in the case of acetone. Although the trends of experimentally observed droplet temperatures and radii are the same as predicted by the model taking into account the interaction between droplets, the actual values of the predicted droplet temperatures can differ from the observed ones by up to about 8 K, and the actual values of the predicted droplet radii can differ from the observed ones by up to about 2%. It is concluded that the effective thermal conductivity model, based on the analytical solution to the heat conduction equation inside droplets, can predict the observed average temperature of droplets with possible errors not exceeding several K, and observed droplet radii with possible errors not exceeding 2% in most cases. These results allow us to recommend the implementation of this model into CFD codes and to use it for multidimensional modelling of spray heating and evaporation based on these codes.  相似文献   

15.
Among the catalysts screened, Cu-ion exchanged ZSM5 zeolite exhibited the highest NO removal activity, particularly at low reaction temperatures below 200 °C, maintaining a wide operating temperature window. The hydrothermal stability of the CuZSM5 catalyst can be improved by the optimization of metal content of the catalyst. Through the variation of reactor operating conditions, NO conversion of better than 90% could be achieved with a minimum NH3 slip. The decomposition of urea was also examined and a kinetic model for both thermal and catalytic decomposition of urea was developed. Urea-SCR over the CuZSM5 catalyst exhibited that the NO removal activity is competitive to that by NH3-SCR, indicating urea can be effectively utilized in SCR reactor system as the reducing agent.  相似文献   

16.
针对单个乙醇溶液液滴在降压环境下蒸发的传热传质过程建立了数学模型。模型基于液相的能量守恒和 传质扩散理论,利用经典拓展模型计算液滴的质量蒸发率,并引入活度系数考虑液滴表面的蒸气分压。采用液 滴悬挂法进行实验,分别记录了乙醇溶液液滴和乙酸溶液液滴在降压蒸发过程中的液滴内温度变化。将实验数 据与计算结果对比,验证了模型的有效性。通过模型计算获得了液滴内部温度分布以及浓度分布随时间的变化。 结果表明:快速降压阶段空气流动较快,加之乙醇工质易挥发,液滴表面温度下降迅速,液滴内部温差和乙醇 浓度梯度较大;压力稳定后,空气流速为零,液滴内部温差和乙醇浓度梯度逐渐减小。由于液滴内部的热扩散 速率大于传质扩散系数,内部温度随时间的变化比浓度随时间的变化更快。  相似文献   

17.
Spray drying is the primary method for manufacturing of food powders from liquids. Optimal design and optimization of spray drying operations at the fundamental level require both modeling of the drying characteristics of a single droplet and dryer wide simulations using computational fluid dynamics (CFD). An accurate yet simple model for drying of a single droplet, which does not require solution of partial differential equation, is ideal input for CFD simulations. The reaction engineering approach (REA) is shown to be appropriate in this regard. It has been successfully used for prediction of skim and whole milk droplet drying behavior under various drying conditions. In this study, an aqueous lactose solution was dried in droplet form and the appropriate REA model parameters obtained. The change of diameter of the droplet during drying was measured experimentally and compared with the model results.  相似文献   

18.
Spray drying is the primary method for manufacturing of food powders from liquids. Optimal design and optimization of spray drying operations at the fundamental level require both modeling of the drying characteristics of a single droplet and dryer wide simulations using computational fluid dynamics (CFD). An accurate yet simple model for drying of a single droplet, which does not require solution of partial differential equation, is ideal input for CFD simulations. The reaction engineering approach (REA) is shown to be appropriate in this regard. It has been successfully used for prediction of skim and whole milk droplet drying behavior under various drying conditions. In this study, an aqueous lactose solution was dried in droplet form and the appropriate REA model parameters obtained. The change of diameter of the droplet during drying was measured experimentally and compared with the model results.  相似文献   

19.
《Fuel》2006,85(12-13):1613-1630
The results of comparative analysis of liquid and gas phase models for fuel droplets heating and evaporation, suitable for implementation into computational fluid dynamics (CFD) codes, are presented. Among liquid phase models, the analysis is focused on the model based on the assumption that the liquid thermal conductivity is infinitely large, and the so-called effective thermal conductivity model. Seven gas phase models are compared. These are six semi-theoretical models based on various assumptions and a model based merely on the approximation of experimental data. It is pointed out that the gas phase model, taking into account the finite thickness of the thermal boundary layer around the droplet, predicts the evaporation time closest to the one based on the approximation of experimental data. In most cases, the droplet evaporation time depends strongly on the choice of the gas phase model. The droplet surface temperature at the initial stage of heating and evaporation does not practically depend on the choice of the gas phase model, while the dependence of this temperature on the choice of the liquid phase model is strong. The direct comparison of the predictions of various gas models, with available experimental data referring to droplet heating and evaporation without break-up, leads to inconclusive results. The comparison of predictions of various liquid and gas phase models with the experimentally observed total ignition delay of n-heptane droplets without break-up, has shown that this delay depends strongly on the choice of the liquid phase model, but practically does not depend on the choice of the gas phase model. In the presence of droplet break-up processes, the evaporation time and the total ignition delay depend strongly on the choice of both gas and liquid phase models.  相似文献   

20.
A model for the evaporation of biomass pyrolysis oil droplets   总被引:1,自引:0,他引:1  
W.L.H. Hallett  N.A. Clark 《Fuel》2006,85(4):532-544
This paper presents a numerical model for the evaporation and pyrolysis of a single droplet of pyrolysis oil derived from biomass. Continuous thermodynamics theory for multi-component droplet evaporation is used, with the fuel being represented by four fractions: organic acids, aldehydes/ketones, water, and pyrolytic lignin, each of which is described by a separate distribution function. Pyrolysis of the lignin fraction is included, and detailed properties for all fractions are presented. The model is compared with the results of suspended droplet experiments, and is shown to give good predictions of the times of the major events in the lifetime of a droplet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号