首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The lipid components of three Cameroonian seed oils, ke tchock (Aframomum arundinaceum), njangsa (Ricinodendron heudelotii) and calabash nutmeg (Monodora myristica), have been investigated. Gas chromatography (GC)–mass spectrometry (MS) fatty acid (FA) analysis showed M. myristica seed oil to be dominated by linoleic (49.29%) and oleic (37.17%) acids; R. heudelotii was mainly linoleic (58.73%), followed by stearic (15.00%) and oleic (14.21%) acids; A. arundinaceum was predominantly oleic (65.76%) and palmitic (20.36%) acids. Electrospray ionization (ESI)-Fourier transform ion cyclotron resonance (FTICR)-MS analysis showed seven major triacylglycerol (TAG) classes for M. myristica, with C54:5, C54:4 and C54:6 dominating. R. heudelotii had eight major TAG classes with C54:8, C54:7 and C54:6 being most abundant. A. arundinaceum also had eight major TAG classes with C52:2, C54:3 and C50:2 dominating. 13C nuclear magnetic resonance (NMR) analysis of the TAGs showed that both sn-1,3 and sn-2 positions were predominantly occupied by linoleoyl and oleoyl chains. High-performance liquid chromatography (HPLC) fluorescence detector (FLD) analysis showed that M. myristica contained only α- and β-tocopherols (195.40 and 73.95 μg/g, respectively), R. heudelotii contained mainly γ-tocopherol (289.40 μg/g), and A. arundinaceum had mainly γ- and β-tocopherols (236.78 and 124.93 μg/g, respectively). GC–MS analysis of the unsaponifiable matter showed that β-sitosterol was the most abundant phytosterol in all three seed oils. The absolute amounts of 4-desmethylsterols were 196.15, 608.71 and 362.15 μg/g for M. myristica, R. heudelotii and A. arundinaceum seed oils, respectively. These compositional and structural studies provide justification for the use of all three seed oils in food products.  相似文献   

2.
Fatty acid (FA) composition of suet oil (SO) was measured by precolumn methylesterification (PME) optimized using a Box–Behnken design (BBD) and gas chromatography/electron ionization-quadrupole mass spectrometry (GC–EI-qMS). A spectral library (NIST 08) and standard compounds were used to identify FAs in SO representing 90.89% of the total peak area. The ten most abundant FAs were derivatized into FA methyl esters (FAMEs) and quantified by GC–EI-qMS; the correlation coefficient of each FAME was 0.999 and the lowest concentration quantified was 0.01 μg/mL. The range of recovery of the FAMEs was 82.1%–98.7% (relative standard deviation 2.2%–6.8%). The limits of quantification (LOQ) were 1.25–5.95 μg/L. The number of carbon atoms in the FAs identified ranged from 12 to 20; hexadecanoic and octadecanoic acids were the most abundant. Eighteen samples of SO purchased from Qinghai, Anhui and Jiangsu provinces of China were categorized into three groups by principal component analysis (PCA) according to the contents of the most abundant FAs. The results showed SOs samples were rich in FAs with significantly different profiles from different origins. The method described here can be used for quality control and SO differentiation on the basis of the FA profile.  相似文献   

3.
An LC–MS method using a single quadrupole mass spectrometer was developed for direct analysis of glycidyl esters of fatty acids in vegetable oils. Without any sample clean-up, this method provided acceptable recovery of seven glycidyl esters, comparable results to a previously-published method utilizing two solid-phase extraction steps, and consistent detection parameters after greater than 200 injections without any cleaning operations performed. This method could readily be implemented as a screening assay for glycidyl esters in most oil laboratories.  相似文献   

4.
Fatty acid analysis is essential to a broad range of applications including those associated with the nascent algal biofuel and algal bioproduct industries. Current fatty acid profiling methods require lengthy, sequential extraction and transesterification steps necessitating significant quantities of analyte. We report the development of a rapid, microscale, single-step, in situ protocol for GC–MS lipid analysis that requires only 250 μg dry mass per sample. We furthermore demonstrate the broad applications of this technique by profiling the fatty acids of several algal species, small aquatic organisms, insects and terrestrial plant material. When combined with fluorescent techniques utilizing the BODIPY dye family and flow cytometry, this micro-assay serves as a powerful tool for analyzing fatty acids in laboratory and field collected samples, for high-throughput screening, and for crop assessment. Additionally, the high sensitivity of the technique allows for population analyses across a wide variety of taxa.  相似文献   

5.
Using advanced electron paramagnetic resonance techniques (EPR), oxidation of crude vegetable oils and their components (fatty acids and triglycerides) by radicals generated from hydrogen peroxide was investigated. The correlation rotational times were determined allowing us to characterize radicals formed during edible oils oxidation. Additionally 1H- and 14N-hyperfine coupling constants differentiate the fatty acids dependently on their unsaturation. The acids with a higher number of unsaturated bonds exhibit higher AN values of PBN/·lipid adduct. The waste oil with high free fatty acids content underwent the oxidation reaction more efficiently, however due to saturation and the high content of the fatty acids the carbon-centered radicals formed (upon hydrogen peroxide radicals) and their PBN (N-tert-butyl-α-phenylnitrone) adducts were less stable. The antioxidant effect was dependent on the amount of α-tocopherol added. In small amounts of up to 0.35 mg/1 g of fatty acid or triglyceride, it inhibited the creation of PBN/·lipid adducts while with higher amounts it intensified adduct formation. The α-tocopherol (AT) addition influence was also studied as spin scavenging dependence and indicated that any addition of the antioxidant in the investigated samples led to free radical scavenging and the effect increased with the increase in AT content.  相似文献   

6.
Svetashev VI 《Lipids》2011,46(5):463-467
A mild and convenient method has been developed for preparing 4,4-dimethyloxazoline (DMOX) derivatives of fatty acids for GC–MS analysis. First, fatty acid methyl esters are converted to corresponding amides by incubation overnight at room temperature with 2-amino-2-methyl-1-propanol and a catalytic amount of sodium methoxide. The resulting 2-(methylpropanol) amides were isolated by partition between hexane–diethyl ether and water, and then converted to 4,4-dimethyloxazoline derivatives by treatment with trifluoroacetic anhydride under mild conditions (50 °C for 45 min). Structures of 2-methylpropanol amide and a DMOX derivative of oleic acid were confirmed by GC–MS. This method was applied to different FAME prepared from animal, plant or microbial lipids. The suggested method is most suitable for structure analysis of polyunsaturated fatty acids (PUFA) and for acids with double bonds in close to terminal positions. Application of the method is illustrated with spectra of the DMOX derivatives of 16:1(n-13), 24:5(n-6) and 24:6(n-3) acids.  相似文献   

7.
When fatty acids in fish are analyzed, results in percentage form (profile analysis) are mostly reported. However, the much more useful results expressed as mg/100 g (absolute analysis) is the main information required. Absolute methods based on calibration curves are of good accuracy but with a high degree of complexity if applied to a great number of analytes. Procedures based on the sequence profile analysis–total FA determination–absolute analysis may be suitable for routine use, but suffer from a number of uncertainties that have never been really resolved. These uncertainties are mainly related to the profile analysis. In fact, most profile analyses reported in the literature disagree about the number and type of fatty acids monitored as well as about the total percentage to assign to their sum so leading to possible inaccuracies; in addition the instrumental response factor for all FAME (fatty acid methyl esters) is often considered as a constant, but this is not exactly true. In this work, a set of 24 fatty acids was selected and studied on 12 fish species in the Mediterranean area (variable in lipid content and month of sampling): in our results, and in these species, this set constitutes, on average, 90 ± 3 % of the total fatty acid content. Moreover the error derived from the assumption of a unique response factor was investigated. Two different detection techniques (GC-FID and GC–MS) together with two capillary columns (different in length and polarity) were used in order to acquire complementary data on the same sample. With the protocol here proposed absolute analyses on the 12 cited species are easily achievable by the total FA determination procedure. The accuracy of this approach is good in general, but in some cases (DHA for example) is lower than the accuracy of calibration-based methods. The differences were evaluated on a case by case basis.  相似文献   

8.
In this study, the aim was to characterize the physicochemical properties and some bioactive compounds of expeller-pressed oils of five registered poppy seed varieties (TMO–1, Ofis–8, Ofis–96, Ofis–95, Ofis–3) grown in Turkey. The amounts of total carotenoids, chlorophylls, phenols, and antioxidant activities of oils ranged between 0.08–0.24 mg 100 g−1, 0.03–9.04 mg pheophytin a kg−1, 3.41–8.57 mg gallic acid equivalent 100 g−1, and 5.60–7.33 mM Trolox equivalent 100 g−1, respectively. The most abundant fatty acid in poppy seed oils was linoleic acid (69.85–74.02%), followed by oleic acid (13.98–16.99%), and palmitic acid (8.51–9.75%). In addition, poppy seed oils were rich in β–sitosterol (133.47–153.42 mg 100 g−1), campesterol (45.36–58.60 mg 100 g−1), and δ–5–avenasterol (28.21–39.40 mg 100 g−1). High amounts of γ–tocopherol and α–tocopherol were detected. This research is the first study, which identified and quantified the polyphenol, β–carotene, and lutein compounds of expeller–pressed poppy seed oils by HPLC. Tyrosol, apigenin, syringic acid, 3–hydroxytyrosol, luteolin, p–coumaric acid, quercetin, ferulic acid, sinapic acid, and veratric acid were detected in expeller-pressed poppy seed oils.  相似文献   

9.
Cholesterol and phytosterols are generally present in foods at ppm levels and they can generate many oxidation products, i.e. oxysterols. The oxysterols comprise only a small percentage of unoxidized sterols. Reliable quantitative data on these compounds requires reasonably good separation by capillary column GC. The present study attempts to overcome the difficulties involved in separating many common oxysterols generated from cholesterol, brassicasterol, campesterol, stigmasterol, and sitosterol by coupling two high-resolution GC capillary columns. The columns, DB-17MS and DB-35MS, were coupled separately to a DB-5MS column. Total separation time of the authentic samples of oxysterols was 41 min for the DB-35MS/DB-5MS and 44 min for the DB-17MS/DB-5MS coupled columns. Two oil samples EBE1 and EBE2 extracted from exhausted bleaching earth collected from Europe were analyzed for oxysterol content by using these column combination systems. Both systems showed similar quantitative results; the total levels of oxysterols in these samples ranged from 2 to 3 mg/100 g. The prominent oxysterols were as follows: 7α-hydroxysterols (0.29–0.49 mg/100 g), 7β-hydroxysterols (0.13–0.68 mg/100 g) and 7-ketosterols (0.63–0.69 mg/100 g).  相似文献   

10.
An interlaboratory study was conducted to evaluate a method for determining glycidyl fatty acid esters (GE) in edible oils. Samples were dissolved in tert-butyl methyl ether/ethyl acetate and subjected to two solid-phase extraction (SPE) steps. The first SPE step utilized methanol elution from a C18 cartridge, and the second SPE step utilized n-hexane/ethyl acetate elution from a silica cartridge. The final extract was analyzed using liquid chromatography with a single quadrupole mass spectrometer in selected ion monitoring (SIM) mode. Quantification was performed using external standardization. Eighteen samples (9 oils × 2 blind duplicates) were assayed for glycidyl palmitate, glycidyl stearate, glycidyl oleate, glycidyl linoleate and glycidyl linolenate by 17 collaborating laboratories from seven countries. Sample matrices included palm, olive, corn, soybean and rapeseed oils. Repeatability (RSDr) ranged from 6.85 to 19.88 % and reproducibility (RSDR) ranged from 16.58 to 35.52 % for samples containing greater than 0.5 mg/kg of individual GE. HORRATR values ranged from 0.62 to 14.70 for determination of total GE. The method provides acceptable results for quantification of GE in edible oils.  相似文献   

11.
Analysis of MCPD esters and glycidyl esters in vegetable oils using the indirect method proposed by the DGF gave inconsistent results when salting out conditions were varied. Subsequent investigation showed that the method was destroying and reforming MCPD during the analysis. An LC time of flight MS method was developed for direct analysis of both MCPD esters and glycidyl esters in vegetable oils. The results of the LC–TOFMS method were compared with the DGF method. The DGF method consistently gave results that were greater than the LC–TOFMS method. The levels of MCPD esters and glycidyl esters found in a variety of vegetable oils are reported. MCPD monoesters were not found in any oil samples. MCPD diesters were found only in samples containing palm oil, and were not present in all palm oil samples. Glycidyl esters were found in a wide variety of oils. Some processing conditions that influence the concentration of MCPD esters and glycidyl esters are discussed.  相似文献   

12.
Camellia seed oil with high nutritional value is widely used in southern China and southeastern Asia for cooking. Due to the high price of camellia seed oil, fraudulent traders blended the oil with inexpensive oils to increase profits. In this paper, a new method was introduced to detect the adulteration of camellia seed oil with soybean oil by GC–MS with consideration of a parameter which was defined by the total content of oleic and linoleic acid, the oleic to linoleic acid ratio and the content of linolenic acid. Oils samples were prepared by blending pure camellia seed oil with pure soybean oil at levels from 1 to 50 %. Fatty acids esterified by TMSH and TBME in seconds were separated and identified by GC–MS. The detection limit of adulteration was as low as 5 %, and even much lower than 5 % for most kinds of camellia seed oil, which was lower than those measured by other methods. All the results indicated that this simple, accurate and rapid method can also be recommended for the authentication of olive oil with some modification.  相似文献   

13.
Flavor is a decisive sensory characteristic to determine the popularity of French fries (FF). To investigate the effect of prolonged deep-frying using various oils on volatiles formation of FF, the FF were prepared in the palm oil (PO), soybean oil (SO), and high-oleic rapeseed oil (RO) for 24 hours intermittent frying. The effect of oil types was found to be more significant than the frying time on the volatiles of FF indicated from the clusters of the fried FF by chemometric analysis. A total of 26 key aroma-active compounds were identified by aroma extract dilution analysis, in which aldehydes were predominant. The FF fried in SO revealed higher desirable aroma compounds, i.e., (E, E)-2,4-decadienal and it increased to maximum value at 12 hours, and left the deep-fried odor in FF. Meanwhile, a significant increase in metallic off-flavor was observed in FF fried in SO and PO at 20 hours, indicating that oil quality reduction resulted in FF with unappealing flavor. The above results showed that frying process had an optimum frying window (approximately 4–16 hours with total polar compounds content below 22.2%), and the French fries prepared in this period obtained higher flavor scores. The study will provide insights into the effect of oil types and oxidation degree on obtaining the ideal flavors for fried food.  相似文献   

14.
15.
First studies on the occurrence of nitrated fatty acids in plasma of healthy subjects revealed basal concentrations of 600 nM for free/nonesterified nitro-oleic acid (NO2-OA) as measured by liquid chromatography tandem mass spectrometry (LC–MS/MS). We recently showed by a gas chromatography tandem mass spectrometry (GC–MS/MS) method the physiological occurrence of two isomers, i.e., 9-NO2-OA and 10-NO2-OA, at mean basal plasma concentrations of 880 and 940 pM, respectively. In consideration of this large discrepancy we modified our originally reported method by replacing solid-phase extraction (SPE) by solvent extraction with ethyl acetate and by omitting the high-performance liquid chromatography (HPLC) step for a more direct detection and with the potential for lipidomics studies. Intra-assay imprecision and accuracy of the modified method in human plasma were 1–34% and 91–221%, respectively, for added NO2-OA concentrations in the range 0–3,000 pM. This method provided basal plasma concentrations of 306 ± 44 pM for 9-NO2-OA and 316 ± 33 pM for 10-NO2-OA in 15 healthy subjects. Nitro-arachidonic acid and nitro-linolenic acid were not detectable in the plasma samples. In summary, our studies show 9-NO2-OA and 10-NO2-OA as endogenous nitrated fatty acids in human plasma in the pM range; HPLC is recommendable as a sample clean-up step for reliable quantification of nitro-oleic acids by GC–MS/MS.  相似文献   

16.
Virgin olive oil is considered a key component of the Mediterranean Diet, while nut and seed “cold-pressed” oils stand out as an interesting ingredient due to the growing consumer demand toward so-called gourmet and healthy oils. The main objective of this work is the development and characterization of novel virgin vegetal oils based on blendings of virgin olive oil with virgin oils obtained from seeds (sesame and flaxseed) and nuts (hazelnut and pistachio) of interest due to their peculiar nutritional and organoleptic characteristics. Oil formulations elaborated with 5% of sesame oils achieve a high content in vitamin E (842 mg kg−1, 11.8 mg per standard 14 g oil dose, corresponding to an 80% of the recommended daily intake) and with 10% of flaxseed a high level in essential α-linolenic acid (6.4%, 0.90 mg per dose corresponding to a 66% of the recommended daily intake). In addition, sensory analysis shows that blends enriched with both 50% hazelnut oil and 75% pistachio oil not only maintain the typical aroma of virgin olive oil, but incorporate the characteristic nutty, roasty, seed-like, and sweet sensory attributes of nuts, providing an added value to the consumers.  相似文献   

17.
The hydrocarbons 1,7-hexadecadiene (1,7-C16:2) and 8-heptadecene (8-C17:1), which are used as markers for identifying irradiated chilled beef, were easily detectable in chilled beef irradiated at 0.5 kGy or higher by using a new method of headspace solid-phase microextraction, gas chromatography and mass spectrometry (HS-SPME–GC–MS). The conditions for using SPME were optimized in this study for qualitative and quantitative determination of 1,7-C16:2 and 8-C17:1 produced by γ-radiation in chilled beef. The relationship between irradiation dose and production of hydrocarbons was also studied, which showed good linear correlation with the coefficients of 0.9942 and 0.9943 for 1,7-C16:2 and 8-C17:1, respectively. HS-SPME–GC–MS is a simple and sensitive method for the analysis of hydrocarbons in irradiated chilled beef.  相似文献   

18.
Two mesoporous silicas functionalized with propylsulfonic (SBA-15-PSA) and arenesulfonic (SBA-15-ASA) acid groups, and a highly acidic, functionalized styrene divinylbenzene copolymer ion exchange resin (Amberlyst-15) were examined for their ability to catalyze the ethanolic esterification of the ω-sulfhydryl fatty acid, 11-mercaptoundecanoic acid (MUA), without catalyzing unwanted side reactions at the sulfhydryl group. All three solid acid catalysts catalyzed the MUA esterification in excess ethanol. The activation energy for the catalytic esterifications were determined from 50 to 75 °C, resulting in apparent E a of 54, 71, and 59 kJ/mol for SBA-15-PSA, SBA-15-ASA, and Amberlyst-15, respectively. GC–MS analysis determined that all three catalysts produced near quantitative conversion of MUA to its ethyl ester with very little reactivity towards the sulfhydryl group. This was a marked improvement over the esterifications catalyzed by sulfuric and p-toluenesulfonic acids which produced thioethers and disulfide side products. The MUA ethyl ester synthesis was demonstrated on a gram scale at 70 °C catalyzed by Amberlyst-15, and the desired product was isolated in 80% yield at >95% purity with a minimum of purification.  相似文献   

19.
The sn position of fatty acids in seed oil lipids affects physiological function in pharmaceutical and dietary applications. In this study the composition of acyl-chain substituents in the sn positions of glycerol backbones in triacylglycerols (TAG) have been compared. TAG from native and transgenic medium-chain fatty acid-enriched rape seed oil were analyzed by reversed-phase high performance liquid chromatography coupled with online atmospheric-pressure chemical ionization ion-trap mass spectrometry. The transformation of summer rape with thioesterase and 3-ketoacyl-[ACP]-synthase genes of Cuphea lanceolata led to increased expression of 1.5% (w/w) caprylic acid (8:0), 6.7% (w/w) capric acid (10:0), 0.9% (w/w) lauric acid (12:0), and 0.2% (w/w) myristic acid (14:0). In contrast, linoleic (18:2n6) and alpha-linolenic acid (18:3n3) levels decreased compared with the original seed oil. The TAG sn position distribution of fatty acids was also modified. The original oil included eleven unique TAG species whereas the transgenic oil contained sixty. Twenty species were common to both oils. The transgenic oil included trioctadecenoyl-glycerol (18:1/18:1/18:1) and trioctadecatrienoyl-glycerol (18:3/18:3/18:3) whereas the native oil included only the latter. The transgenic TAG were dominated by combinations of caprylic, capric, lauric, myrisitic, palmitic (16:0), stearic (18:0), oleic (18:1n9), linoleic, arachidic (20:0), behenic (22:0), and lignoceric acids (24:0), which accounted for 52% of the total fat. In the original TAG palmitic, stearic, oleic, and linoleic acids accounted for 50% of the total fat. Medium-chain triacylglycerols with capric and lauric acids combined with stearic, oleic, linoleic, alpha-linolenic, arachidic, and gondoic acids (20:1n9) accounted for 25% of the transgenic oil. The medium-chain fatty acids were mainly integrated into the sn-1/3 position combined with the essential linoleic and alpha-linolenic acids at the sn-2 position. Eight species contained caprylic, capric, and lauric acids in the sn-2 position. The appearance of new TAG in the transgenic oil illustrates the extensive effect of genetic modification on fat metabolism by transformed plants and offers interesting possibilities for improved enteral applications.  相似文献   

20.
Fischer–Tropsch (FT) synthesis reaction was performed using ferrihydrite catalyst. During 100 h of FT synthesis reaction, composition changes of the reaction product were studied according to the reaction time using an on-line GC, and the final FT products collected in traps were analyzed by GC–MS. Also, an effect of gas feed ratio of H2/CO on the selectivity of the synthetic products was studied. As a H2/CO feed ratio increased, not only CO conversion and activity of catalyst improved two times, but also CO2 conversion was reduced by approximately 40% thereby improving the efficiency of catalyst significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号