首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The electron doped Ln2−xCexCuO4 (Ln=lanthanide) oxides have intergrowth structures consisting of superconductively active CuO2 sheets alternating with inactive (Ln, Ce)2O2 fluorite layers along the c-axis. Stabilization of such intergrowth structures requires bond length matching across the intergrowth interface. The bond length matching criterion causes a monotonic decrease in the Ce solubility limit from x=0.24 to x=0.15 as the size of Ln3+ decreased from Ln=La0.5Nd0.5 to Ln=Gd. Annealing in N2 atm of Ln2−xCexCuO4 at temperatures above 900°C creates oxygen vacancies and the number of vacancies decreases with increasing Ce content. The value of x at which a semiconductor to superconductor transition occurs in Ln2−xCexCuO4 increases with decreasing size of Ln3+ due to an increasing Madelung energy caused by a decreasing Cu−O bond length.  相似文献   

2.
For the nominal composition of Bi2.27−xPbxSr2Ca2Cu3O10+d, the lead content was varied from x < 0.05 to 0.45. The compositions were examined between 800 and 890‡C which is supposed to be the temperatue range over which the so-called 2223 phase (Bi2Sr2Ca2Cu3O10+d) is stable. Only compositions between x < 0.18 to 0.36 could be synthezised in a single phase state. For x <0.36, a lead-containing phase with a stoichiometry of Pb4(Sr,Ca)5CuOd with a small solubiliy of Bi is formed, for x > 0.18 mainly Bi2Sr2CaCu2O8+d and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 800 to 890‡C but the 2223 phase has extremely varying cation ratios over this temperaure range. Former single phase 2223 samples turn to multiphase samples when annealed at slightly higher or lower temperaures. A decrease in the Pb solubility with increasing as well as decreasing temperature with a maximum at about 850‡C was found for the 2223 phase.  相似文献   

3.
Previous work has shown that unlike YBa2 Cu3 O7-δ (Y123), the Nd-Ba-Cu-O system exhibits a solid solution Nd1+xBa2-x Cu3O7+δ (Nd123ss) for 0.04≤ × ≤0.6.1–3) An earlier paper showed that although the superconducting properties decrease nonlinearly for increasing x, Tc can be varied by increasing the annealing temperature without changing the low temperature oxygen soak.2 The changes in microstructure and Tc with increasing x are analogous with Y123 with increasing δ except that the total hole concentration remained constant. Tc was modeled in terms of oxygen disorder resulting from Nd3+ atoms on the Ba sites relocating chain oxygens to anti-chain sites. The variability in Tc as a function of x and processing conditions can be explained by the number of fourfold coordinated coppers on the chain sites. In this paper, the model has been further substantiated by processing in 1% O2. The annealing in a reduced oxygen partial pressure followed by a 450°C oxygen soak resulted in a marked increase in Tc compared to the 100% PO2 anneal. The low PO2 anneal favors pairing of Nd3+ substituting for Ba2+ to conserve oxygen ions, resulting in fewer disrupted fourfold-coordinated coppers thus increasing charge transfer from the planes to the chains.  相似文献   

4.
Interfacial reactions between the Ba2YCu3O6+x superconductor and the CeO2 buffer layers employed in coated conductors have been modeled experimentally by investigating the kinetics of the reaction between Ba2YCu3O6+x films and CeO2 substrates. At 810°C, the Ba2YCu3O6+x -CeO2 join within the BaO-Y2O3-CeO2-CuO x quaternary system is nonbinary, thereby establishing the phase diagram topology that governs the Ba2YCu3O6+x /CeO2 reaction. At a mole ratio of Ba2YCu3O6+x :CeO2 of 40:60, a phase boundary was found to separate two four-phase regions. On the Ba2YCu3O6+x -rich side of the join, the four-phase region consists of Ba2YCu3O6 +x , Ba(Ce1−z Y z )O3−x , BaY2CuO5, and CuO x ; on the CeO2 rich side, the four phases were determined to be Ba(Ce1−z Y z ) O3−x , BaY2CuO5, CuO x and CeO2. The Ba2YCu3O6+x /CeO2 reaction is limited by solid-state diffusion, and the reaction kinetics obey the parabolic rule, x = Kt 1/2, where x = thickness of the reaction layer, t = time, and K = a constant related to the rate constant; K was determined to be 1.6 × 10−3 μm/s1/2 at 790°C and 4.7 × 10−3 μm/s1/2 at 830°C. The activation energy for the reaction was determined to be E act = 2.67 × 105 J/mol using the Arrhenius equation.  相似文献   

5.
Using piezoelectric LiNbO3 crystal oscillator method at 200 kHz, we have measured internal friction and modulus of YBa2Cu3O6+x short wires with 1 mm-diameter and about 5mm length under in situ cyclic heating-cooling treatment at temperatures of 300–1020K. Polycrystalline YBa2Cu3O6+x wires show anelastic behavior as well as orthorhombic-to-tetragonal (O-T) phase transition within present temperature range. There appears a strong internal friction peak below the O-T transition temperature, corresponding to the atomic site relaxation between oxygen and a vacancy in the Cu-O plane of oxygen defective YBa2Cu3O6+x. A novel peak is observed after the cyclic heat treatments at around 700K. This relaxation is attributed to the hopping movement of oxygen in the defective local structure of YBa2Cu3O6+x.  相似文献   

6.
The phase transformation of Bi1.7Pb0.4Sr1.6Ca2.4Cu3.6Oy bulk materials rapidly melted and solidified by a CO2 laser with the scanning speed of 40 mm/s were investigated. Results of x-ray diffraction pattern, scanning electron microscopy and energy-dispersive x-ray analysis showed the decomposition of the high-Tc phase in the laser irradiated region. Nonsuperconducting phases such as CaO and (Sr1−xCax)CuOy were found to be in the melting zone. On the other hand, (Sr1−xCax)CuOy and 2212 phase were also found in the heat-affected zone. When the irradiated samples were treated with 835‡C for 72 h in air, the laser treated region changed into the high-Tc as a major phase, in addition to the low-Tc phase and nonsuperconducting phase. However, the high-Tc phases are piled up randomly. The transport critical-current density of the laser treated samples after annealing is lower than that of the original sintered one, i.e. at 77K and zero magnetic field.  相似文献   

7.
We have developed a technique to produce high quality Tl2Ba2Ca2Cu3O10 powders used for making superconducting wire, tape, lead, shield, and other large scale bulk applications. Starting with T12O3, BaO2, CaO, and CuO, we mix and grind these chemicals with a machine ball mill and then press the ground mixture into pellets. The pellets are sintered at about 895‡C for at least 30 h in an oxygen atmosphere. The sintered material is mainly the Tl2Ba2Ca2Cu3O10 compound. To get more homogeneous superconductor powders, we pulverize the sintered material and use a magnetic superconducting material selector to separate and grade the material. Finally, the top grade material has a phase purity of <98% and a Tc(r < 0) of 123–126K.  相似文献   

8.
钟丽云  杨宇 《激光技术》1998,22(1):11-14
在对红外探测器进行理论分析的基础上,设计并研制了液氮温度下的Yba2Cu3-xZnxO7薄膜红外探测器,系统地测试了器件的特征参数.最好的结果为:对于波长为10μm,调制频率为f=500Hz,带宽为Δf=1Hz的红外输入辐射Rv(500,10,1)=3587V/W,NEP(500,10,1)=6.5×10-12W/Hz1/2,D*(500,10,1)=7.2×1012cmHz1/2/W,τ(500,10,1)=1.2ms.  相似文献   

9.
The structure of interfaces in superconducting/ferromagnetic YBa2Cu3O7−x/La0.67Ca0.33MnO3 superlattices has been analyzed by scanning transmission electron microscopy and high spatial resolution electron energy loss spectroscopy. Individual layers are flat over long lateral distances. The interfaces are coherent, free of defects, exhibiting no roughness, and are located at the BaO plane of the superconductor. Concerning chemical disorder, EELS measurements show the absence of measurable chemical interdiffusion within experimental error bars.  相似文献   

10.
In order to gain deep insight into the origin of the large thermoelectric power and metallic electrical conduction observed for La2−x Sr x CuO4 possessing a two-dimensional layered structure and the consequently obtained two-dimensional electronic structure, we investigate the energy–momentum dispersion and the lifetime of quasiparticles by using high-resolution angle-resolved photoemission spectroscopy. By calculating the thermoelectric power using the Bloch–Boltzmann theory and the experimentally obtained information about the electronic structure and electron scatterings, we found that the large thermoelectric power of La2−x Sr x CuO4 is mainly brought about by the anisotropic electron scattering caused by the strong electron correlation, and that the two-dimensional electronic structure makes almost no important contribution to the large S(T) except for rather minor effect of the van Hove singularity near the Fermi level.  相似文献   

11.
The superconducting properties of (M x /YBa2Cu3O7−δy )N multilayer films were studied for varying layer thickness x. Different M phases were examined including green-phase Y2BaCuO5 (211), Y2O3, BaZrO3, CeO2, SmBa2Cu3O7−δ (Sm123), brown-phase La2BaCuO5 (La211), and MgO. Multilayer (M x /YBa2 Cu3O7−δy )N structures were grown by pulsed laser deposition onto SrTiO3 or LaAlO3 single-crystal substrates by alternate ablation of separate YBa2Cu3O7−δ (123) and M targets, at temperatures of 750°C to 790°C. The x layer thickness was varied from 0.1 nm to 4.5 nm, and the y 123 layer thickness was kept constant within a given range of 10 to 25 nm. Different M phase and x layer thicknesses caused large variations of the microstructural and superconducting properties, including superconducting transition (T c), critical current density as a function of applied magnetic field J c(H), self-field J c(77 K), and nanoparticle layer coverage. Strong flux-pinning enhancement up to 1 to 3x was observed to occur for M additions of 211 and BaZrO3 at 65 to 77 K, Y2O3 at 65 K, and CeO2 for H < 0.5 T. BaZrO3 had a noticeably different epitaxy forming smaller size nanoparticles ∼8 nm with 3 to 4x higher areal surface particle densities than other M phases, reaching 5 × 1011 nanoparticles cm−2. To optimize flux pinning and J c (65 to 77 K, H = 2 to 3 T), the M layer thickness had to be reduced below a critical value that correlated with a nanoparticle surface coverage <15% by area. Unusual effects were observed for poor pinning materials including Sm123 and La211, where properties such as self-field J c unexpectedly increased with increasing x layer thickness.  相似文献   

12.
Melt texture process of YBCO leads to a YBa2Cu3O7−x matrix where Y2BaCuO5 particles are observed. The Y2BaCuO5 inclusions size and distribution depend upon several parameters: YBa2Cu3O7-x grain size in the presintered, heating rate, dopants. The influence of an excess of Y2BaCuO5 and/or BaSnO3 on these Y2BaCuO5 particles are observed in the liquid phase and in the texture domain. According to the dopant used, two kinds of coarsening of Y2BaCuO5 can be observed: an isotropic and an anisotropic. The control of the distribution of Y2BaCuO5 particle size is of primary interest to improve the efficiency of the MTG process. In particular large cooling rate (5°C/h) during the texture formation could be used by adding Y2BaCuO5 + BaSnO3 to YBa2Cu3O7−x composition.  相似文献   

13.
《Applied Superconductivity》1996,4(7-8):327-335
The structural and superconducting properties of (Gd1−xyCayHfx)Ba2Cu3Oz samples are investigated using X-ray diffraction, resistivity, AC susceptibility and oxygen content measurements. The effect of increasing Hf concentration in (Gd1−xHfx)Ba2Cu3Oz lowers the oxygen content and decreases Tc which is attributed to hole filling by Hf. The substitution of Ca for Gd in (Gd0.85−yCayHf0.15)Ba2Cu3Oz provides proper matching between the ionic radius and valence of Gd3+ (0.94 Å) and the average ionic radius and valence of Hf4+ (0.78 Å) and Ca2+ (0.99 Å). As the Ca content increases, the Tc increases from 81 K (y = 0.05) to 86.5 K (y = 0.20, compensated oxide), closer to the value of 91 K for pure GdBa2Cu3O7−δ due to the balance between the hole filling by Hf and hole doping by Ca. A comparative study of Hf doped samples of (R1−xHfx)Ba2Cu3Oz (R = Y, Er, Gd) indicates that the magnetic moment carried by R-ion plays an important role in the suppression of superconductivity and Tc.  相似文献   

14.
Yb‐doped Ca8La2(PO4)6O2 (CLPA) single crystals with the apatite‐type structure and having <0001> orientation were grown by the micro‐pulling‐down (μ‐PD) method. The apatite structure is represented by the monophased field of Ca8(La2–xYbx)‐(PO4)6O2 (CLYPA) where it is assumed that 2 Ca2+ sites are substituted by La3+ and Yb3+ cations. Its monophased range was found to be from x = 0.0 to 0.2. The segregation of Yb3+ in CLPA single crystals and the maximum Yb3+ concentration are discussed. The crystallinity was studied using X‐ray rocking curve analysis. Absorption, emission and fluorescence decay studies of Yb3+ ions in CLPA were also carried out both at low temperature and room temperature. Spectroscopic data reveal Yb3+ ion occupation within different crystallographic sites of the apatite‐type structure. The potential for a diode‐pumped Yb3+ laser is evaluated.  相似文献   

15.
YBa2Cu3Ox domains for levitation applications have been produced by a seeding technology that includes Nd1+x Ba2−x Cu3Oy seeds and melt-processing technologies such as conventional melt-textured growth, melt-texturing with PtO2 and Y2BaCuO5 additions, and the new solid-liquid-melt-growth technology. Large domains (∼20 mm) with high levitation forces (F1 up to 8.2 N) have been produced. The reproducibility of the results is good, and the capability of producing a large number of pellets in a single batch indicates good potential for the production of large amounts of this material.  相似文献   

16.
Single phase materials of La1+xBa2−xCu3Oz with x=0.0,…,0.98, were synthesized from highly homogeneous precursors, prepared by spray-drying or the polymerized complex method. These samples were characterized using X-ray diffraction (XRD), Raman spectroscopy and AC susceptibility measurements. The effects of composition, processing time, temperature and oxygen partial pressure, on the formation and decomposition of La1+xBa2−xCu3Oz prepared by different methods, were investigated. We found that: Tc gradually decreased with the increase of La content; orthorhombic distortions appear at x<0.25 and x>0.7; and single phase stoichiometric La-123 ceramic samples, obtained at low oxygen partial pressure and quenched, decomposed into La-123ss (x=0.2) and BaCuO2 after annealing at a rather low temperature, below 500°C.  相似文献   

17.
Data are presented demonstrating the formation of native oxides from high Al composition In0.5(AlxGa1-x)0.5P (x≳ 0.9) by simple annealing in a “wet” ambient. The oxidation occurs by reaction of the high Al composition crystal with H2O vapor (in a N2 carrier gas) at elevated temperatures (≥500° C) and results in stable transparent oxides. Secondary ion mass spectrometry (SIMS) as well as scanning and transmission electron microscopy (SEM and TEM) are employed to evaluate the oxide properties, composition, and oxide-semiconductor interface. The properties of native oxides of the In0.5(AlxGa1-x)0.5P system are compared to those of the AlxGa1-xAs system. Possible reaction mechanisms and oxidation kinetics are considered. The In0.5(AlxGa1-x)0.5P native oxide is shown to be of sufficient quality to be employed in the fabrication of stripe-geometry In0.5(AlxGa1-x)0.5P visible-spectrum laser diodes.  相似文献   

18.
The composition of photochemically grown native oxides on Hg1-xCdxTe (x = 0.3) has been analyzed and depth profiled using x-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy. The oxide films were grown in either N2O or O2 ambients, and differences in the oxidation process were examined by varying the time and temperature of oxide growth. Under all growth conditions, oxides grown in an O2 ambient exhibited a higher Hg concentration in the bulk oxide region when compared to N2O grown oxides. The Hg/Te ratio of all the oxides was found to be less than the starting Hg1-xCdxTe substrates and, in some cases, this may be leading to an accumulation of Hg in the oxide/Hg1-xCdxTe interface region. For growths at higher temperatures (∼75°C), the excess Hg was seen to move from the oxide/Hg1-xCdxTe interface region to the oxide surface. In O2 ambients, the Hg accumulated at the surface of the oxide whereas for growths in N2O, it was lost to the ambient. Previous results on photochemical oxidation of Hg1-xCdxTe show an inverse relationship between oxide growth rate and temperature. Evidence obtained in this study from oxide compositions, depth profiles and annealing at higher temperatures, suggest that this relationship between oxide growth rate and temperature is primarily due to temperature induced differences in the oxidizing ambient, and not the result of a change in the film growth mechanism due to changing diffusion characteristics with temperature.  相似文献   

19.
From a consideration of the phase equilibrium diagram of the system Bi2O3-SrO-CaO-CuO, a simple annealing procedure was developed to precipitate Bi2+xSr2+xCuO6+d, Sr14Cu24O41−x, and Bi2Sr3O6 in high-temperature superconducting Sr-rich “Bi2Sr2CaCu2O8” ceramics and Ca2CuO3 and a liquid in Ca-rich “Bi2Sr2CaCu2O8” ceramics. The transformation results in an increase of the critical current density of which is believed to express improved pinning properties of the superconducting crystals, in particular an increased pinning energy, which reduces the probability for thermally activated depinning. Possible pinning centers which were introduced during precipitation of the second phases are the surface of the precipitates.  相似文献   

20.
Phase relations in Cu-RO1.5-O(R < Ho,Er,Yb) ternary systems at 1273K have been established by isothermal equilibration of samples containing different ratios of Cu:R(R < Ho,Er,Yb) in flowing air or high purity argon atmosphere for four days. The samples were then rapidly cooled to ambient temperature and the coexisting phases were identified by powder x-ray diffraction analysis. Only one ternary oxide, Cu2R2O5(R < Ho,Er,Yb) was found to be stable. The chemical potential of oxygen for the coexistence of the three phase assemblage, Cu2O + R2O3 + Cu2R2O5(R < Ho,Er,Yb) has been measured by employing the solid-state galvanic cells,< (−) Pt, Cu2O + Ho2O3+ Cu2Ho2O5//CSZ//Air (Po2< 2.12 × 104 Pa), Pt (+) (−) Pt, Cu2O + Er2O3+ Cu2Er2O//CSZ//Air (Po2< 2.12 × 104 Pa), Pt (+) (−) Pt, Cu2O + Yb2O3 + Cu2Yb2O5//CSZ//Air (Po2 < 2.12 × 104 Pa), Pt (+) in the temperature range of 1000 to 1325K. Combining the measured emf of the above cells with the chemical potential of oxygen at the reference electrode, using the Nernst relationship, gives for the reactions, 2Cu2O(s) + 2Ho2O3(s) + O2(g) → 2Cu2Ho2O5(s) (1) 2Cu2O(s) + 2Er2O3(s) + O2(g) → 2Cu2Er2O5(s) (2) and 2Cu2O(s) + 2Yb2O3(s) + O2(g) → 2Cu2Yb2O5(s) (3) δΜo2 = −219,741.3 + 145.671 T (±100) Jmol−1 (4) δΜo2 = −222,959.8 + 147.98 T(±100) Jmol−1 (5) and δΜo2 = −231,225.2 + 151.847 T(±100) Jmol−1 (6) respectively. Combining the chemical potential of oxygen for the coexistence of Cu2O + R2O3 + Cu2R2O5(R Ho,Er,Yb) obtained in this study with the oxygen potential for Cu2O + CuO equilibrium gives for the reactions, 2 CuO(s) + Ho2O3(s) → Cu2Ho2O5(s) (7) 2 CuO(s) + Er2O3(s) → Cu2Er2O5(s) (8) and 2 CuO(s) + Yb2O3(s) → Cu2Yb2O5(s) (9) δG‡ < 22,870.3 − 23.160 T (±100) Jmol−1 (10) δG‡ < 21,261.1 − 22.002 T (±100) Jmol−1 (11) and δG‡ < 17,128.4 - 20.072 T (±100) Jmol-1 (12) It can be clearly seen that the formation of Cu2R2O5R < Ho,Er,Yb) from the component oxides is endothermic. Further, Cu2R2O5(R < Ho,Er,Yb) are an entropy stabilized phases. Based on the results obtained in this study, the oxygen potential diagram for Cu-R-O(R < Ho,Er,Yb) ternary system at 1273K has been composed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号