首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Dredging rivers is needed to ensure safe navigable waters, rivers and waterways. To anticipate the management of dredged materials in the case of the river Seine basin, the quality of the sediments in the river is checked every 3 years before dredging operations. The river Seine Basin is heavily submitted to pollution pressure from nearby industrial activities and urban expansion of Paris and its region. Here, the micropollutant content of the sediment sampled in 1996, 1999 and 2000 before dredging is discussed compared to regulatory standards. The results indicate that most of the sediment samples from the river Seine basin are lightly to moderately contaminated with organic and inorganic micropollutants (heavy metals, PAH, PCB), which makes the management after dredging easier. This pollution is strongly correlated with the organic matter content and to the fine fraction (<50 microm) of the sediment. These results can lead to other management options than the ones already used in the river Seine basin: (1) dumping of lightly to moderately polluted sediments in quarries; and (2) physical treatment (sieving, hydrocycloning) of contaminated sediments issued from 'hot spots'.  相似文献   

2.
River basin metal pollution originates from heavy industries (plating, automobile) and from urban sources (Paris conurbation: 2740 km(2), 9.47 million inhabitants). The natural sources of metal have been found to be limited due to sedimentary nature of this catchment and to the very low river sediment transport (10 t km(-2) y(-1)). Several types of data have been collected to build the metal budget within the whole Seine River basin: field surveys, economical statistics and environmental models. Environmental contamination and related fluxes have been measured on atmospheric fallout, rural streams particles, and Seine River particles upstream and downstream of Paris and at river mouth. Metal pathways and budgets have been set up for (i) a typical cultivated area, (ii) a Paris combined sewer system, (iii) Paris conurbation and (iv) the whole catchment metal retention effect in floodplain and dredged material. Metal fluxes to the estuary have been decomposed into natural, urban domestic and other sources. The latter are within 1-2 orders of magnitude larger than waste water fluxes directly released into rivers according to an industrial census. These fluxes have been further compared to the annual use (1994-2003) of these metals. Metal excess fluxes exported by the river are now a marginal leak of metal inputs to the catchment (i.e. "raw" metals, metals in goods, atmospheric fallout), generally from 0.2 to 5 per thousand. However, due to the very limited dilution power in this basin, the contamination of particles is still relatively high. The Seine River basin is gradually storing metals, mostly in manufactured products used in construction, but also in various waste dumps, industrial soils, agricultural and flood plain soils.  相似文献   

3.
The Seine river watershed (France) is a deeply anthropogenically impacted area, due to the high population density, intense industrial activities and intensive agriculture. The water quality and ecological functioning of the different rivers of the Seine drainage network have been extensively studied during the last fifteen years within the framework of a large French multidisciplinary scientific program (PIREN Seine program). This paper presents a synthesis of the main data gained in the scope of this program concerning the microbiological water contamination of the rivers of the Seine drainage network. The more common indicator of fecal contamination (fecal coliforms) was mainly used; some complementary works used E. coli and intestinal enterococci as alternative fecal indicators. Point sources (outfall of wastewater treatment plants) and non point sources (surface runoff and soil leaching) of fecal pollution to the rivers of the watershed were quantified. Results showed that, at the scale of a large urbanised watershed as the Seine basin, the input of fecal micro-organisms by non-point sources is much lower than the inputs by point sources. However, the local impact of diffuse non-human sources (especially surface runoff of pastured fields) can be of major importance on the microbiological quality of small headwater rivers. Fecal contamination of the main rivers of the Seine watershed (Seine, Marne, Oise rivers) was studied showing high level of microbiological pollution when compared to European guidelines for bathing waters. The strong negative impact of treated wastewater effluents outfall on the microbiological quality of receiving rivers was observed in different areas of the watershed. Once released in rivers, culturable fecal bacteria disappeared relatively rapidly due to mortality (protozoan grazing, lysis) or loss of culturability induced by stress conditions (sunlight effect, nutrient concentration, temperature). Mortality rates of E. coli were studied in different types of rivers within the watershed showing, in summer conditions, no major difference in the mortality rates in small and large rivers. As a result of these studies, a module describing the dynamics of fecal bacteria has been developed and embedded within a hydro-ecological model describing the functioning of the rivers of the whole watershed (the SENEQUE model). Once validated, such a model can be used for testing predictive scenarios and thus can be a very useful tool for the management of microbiological water quality at the scale of the whole basin.  相似文献   

4.
5.
The contamination of the River Seine (France) and its main tributaries (Yonne, Marne, Oise) have been studied, under different hydrological conditions, at the end of spring before the low watermark and at the beginning of autumn after the first swelling of flow.The sector under study consists of the Seine basin, centered on the Paris area; the variability of PCB concentration in water, apart from flow dependence, shows that important lateral discharges are involved. The pollution level is particularly noticeable at Paris and downstream from Paris and the median concentration in sediments reaches 3800 ng l−1 (ppb). Data on particulate organic carbon and various grain size fractions show the PCB to be preferentially adsorbed on organic-rich sedimentary particles.Partition coefficients between particulate matter and liquid phase have been computed and show that the liquid phase has the main role in micropollutant transport.  相似文献   

6.
Urban part of Seine River serving as drinking water supply in Paris can be heavily contaminated by Cryptosporidium spp. and Giardia duodenalis. In the absence of agricultural practice in this highly urbanized area, we investigated herein the contribution of treated wastewater to the microbiological quality of this river focusing on these two parasites. Other microorganisms such as faecal bacterial indicators, enteroviruses and oocysts of Toxoplasma gondii were assessed concurrently. Raw wastewaters were heavily contaminated by Cryptosporidium and Giardia (oo)cysts, whereas concentrations of both protozoa in treated wastewater were lower. Treated wastewater, flowed into Seine River, had a parasite concentration closed to the one found along the river, in particular at the entry of a drinking water plant (DWP). Even if faecal bacteria were reliable indicators of a reduction in parasite concentrations during the wastewater treatment, they were not correlated to protozoal contamination of wastewater and river water. Oocysts of T. gondii were not found in both raw and treated wastewater, or in Seine River. Parasitic contamination was shown to be constant in the Seine River up to 40 km upstream Paris. Altogether, these results strongly suggest that treated wastewater does not contribute to the main parasitic contamination of the Seine River usually observed in this urbanized area.  相似文献   

7.
Fresh floodplain deposits (FD), from 11 key stations, covering the Seine mainstem and its major tributaries (Yonne, Marne and Oise Rivers), were sampled from 1994 to 2000. Background levels for Cd, Cu, Hg, Pb, and Zn were established using prehistoric FD and actual bed sediments collected in small forested sub-basins in the most upstream part of the basin. Throughout the Seine River Basin, FD contain elevated concentrations of Cd, Cu, Hg, Pb and Zn compared to local background values (by factors>twofold). In the Seine River Basin, trace element concentrations display substantial downstream increases as a result of increasing population densities, particularly from Greater Paris (10 million inhabitants), and reach their maxima at the river mouth (Poses). These elevated levels make the Seine one of the most heavily impacted rivers in the world. On the other hand, floodplain-associated trace element levels have declined over the past 7 years. This mirrors results from contemporaneous suspended sediment surveys at the river mouth for the 1984-1999 period. Most of these temporal declines appear to reflect reductions in industrial and domestic solid wastes discharged from the main Parisian sewage plant (Seine Aval).  相似文献   

8.
The Seine basin (France) is dominated by the megalopolis of Paris (10 millions inhabitants), surrounded by intensive agricultural areas: it represents an important example of regional territory strongly affected by anthropogenic activity. In the scope of the PIREN-Seine program, an interdisciplinary study of this basin was conducted. This paper introduces a special issue of the Science of the Total Environment devoted to the results of this program. It summarizes the main features of the Seine river system, the physical characteristics of its drainage network and its watershed, and the nature and spatial distribution of human activities. The scientific approaches used for the study of the system are described, emphasizing the role of material budgeting, mathematical modeling and historical reconstruction. Some functional characteristics of the Seine watershed and drainage network are summarized, showing that the system is now essentially controlled by anthropogenic constraints.  相似文献   

9.
天津大沽排污河清淤污泥填埋场设计方案   总被引:1,自引:0,他引:1  
对大沽河现状水体的监测表明,水体中氨氮和BOD严重超标,重金属不超标;对底泥的检测表明,重金属污泥集中在淤泥层中,而硬泥没有被污染。因此,对淤泥进行清淤将会大大提高河道的水质。根据垃圾填埋场的设计经验和清淤污泥的特性,工程采用提供侧限的堤坝式填埋方式,并且设置了雨水分流系统、渗滤液收集系统、封场处理和填埋气体导排系统。另外,还通过试验预测了污泥渗滤液的水质。  相似文献   

10.
Lead isotopes ratios have been determined in suspended matter and water samples collected from major rivers and estuaries in France to assess their present level of Pb pollution.Most of the anthropogenic Pb found in the environment comes from Pb alkyls added to petrol. In France most petrol Pb comes from imported Pb ores which mainly have very characteristic Pb isotopes ratios (for example, a low 206Pb/207Pb ratio). Indeed, the 206Pb/207Pb ratio of aerosols sampled in France near a highway and a carpark was found to be very low (1.09-1.11). Despite not being so important with respect to atmospheric and water pollution, anthropogenic Pb produced by the iron, steel and copper production industries has also been considered and a slightly higher 206Pb/207Pb ratio (1.141) has been found from measurements made in the north of France near industrial plants.Conversely, higher 206Pb/207Pb ratios (1.197-1.206) were found in the pre-industrial sediments discharged by the rivers studied. These ratios are considered to be representative of local natural Pb during pre-industrial times.The measured Pb isotopes ratios in the suspended particulate matter compared with the two end-members show that the most polluted river is the Seine, followed by the Rhône and then the Garonne and the Loire. It is shown that anthropogenic Pb pollution is more easily detected when the solid discharge is low, such as in the Seine river. Conversely, a high particulate load can dilute the level of pollution by anthropogenic Pb and in this case Pb isotopes ratios are very similar to the natural level.As far as estuaries are concerned (the Seine estuary was not studied), variations of Pb isotopes ratios are generally observed and are attributed either to natural geochemical processes (Gironde estuary) or to man's influence (Loire and Rhône estuaries).  相似文献   

11.
To achieve the objectives of the European Water Framework Directive (EWFD), the Seine basin Water Authority has constructed a number of prospective scenarios forecasting the impact of planned investments in water quality. Paris and its suburbs were given special attention because of their impact on the river Seine. Paris sewer system and overflow control is of major concern in future management plans. The composition and fate of the urban effluents have been characterized through numerous in situ samplings, laboratory experiments and modelling studies. The PROSE model was especially designed to simulate the impact on the river of both permanent dry-weather effluents and of highly transient Combined Sewer Overflow (CSO). It was also used to represent the impact of Paris at large spatial and temporal scales. In addition to immediate effects on oxygen levels, heavy particulate organic matter loads that settle downstream of the outlets contribute to permanent oxygen consumption. Until the late 90s, the 50 km long reach of the Seine inside Paris was permanently affected by high oxygen consumption accounting for 112% of the flux upstream of the city. 20% of this demand resulted from CSO. However, the oxygenation of the system is strong due to high phytoplankton activity. As expected, the model results predict a reduction of both permanent dry-weather effluents and CSOs in the future that will greatly improve the oxygen levels (concentrations higher than 7.3 mgO(2) L(-1), 90% of the time instead of 4.0 mgO(2) L(-1) in the late 90s). The main conclusion is that, given the spatial and temporal extent of the impact of many CSOs, water quality models should take into account the CSOs in order to be reliable.  相似文献   

12.
A software package is presented here to predict the fate of nitrogen fertilizers and the transport of nitrate from the rooting zone of agricultural areas to surface water and groundwater in the Seine basin, taking into account the long residence times of water and nitrate in the unsaturated and aquifer systems. Information on pedological characteristics, land use and farming practices is used to determine the spatial units to be considered. These data are converted into input data for the crop model STICS which simulates the water and nitrogen balances in the soil-plant system with a daily time-step. A spatial application of STICS has been derived at the catchment scale which computes the water and nitrate fluxes at the bottom of the rooting zone. These fluxes are integrated into a surface and groundwater coupled model MODCOU which calculates the daily water balance in the hydrological system, the flow in the rivers and the piezometric variations in the aquifers, using standard climatic data (rainfall, PET). The transport of nitrate and the evolution of nitrate contamination in groundwater and to rivers is computed by the model NEWSAM. This modelling chain is a valuable tool to predict the evolution of crop productivity and nitrate contamination according to various scenarios modifying farming practices and/or climatic changes. Data for the period 1970-2000 are used to simulate the past evolution of nitrogen contamination. The method has been validated using available data bases of nitrate concentrations in the three main aquifers of the Paris basin (Oligocene, Eocene and chalk). The approach has then been used to predict the future evolution of nitrogen contamination up to 2015. A statistical approach allowed estimating the probability of transgression of different concentration thresholds in various areas in the basin. The model is also used to evaluate the cost of the damage resulting of the treatment of drinking water at the scale of a groundwater management unit in the Seine river basin.  相似文献   

13.
The concentrations of dissolved trace elements (Li, B, Mn, Cu, As, Rb, Sr, Mo, Cd, Ba, Pb) in the Marne and Seine rivers in the Paris urban area were monitored over a 2-year period. The resulting data indicated moderate contamination of waters by the most toxic elements (Cu, As, Cd and Pb). The River Marne upstream and the River Seine downstream of the city of Paris displayed similar concentrations. However higher fluxes of trace elements were observed in the Seine than in the Marne due to their different discharges. Li, B, Rb, Sr and Ba concentrations were correlated with river discharge and concentrations were higher during high river flow. This was interpreted as a dilution by discharge from a major natural or anthropogenic source. Mn, Cu, Mo, Cd and Pb concentrations were not correlated with discharge. Dissolved Mn, Cu and Cd increased rapidly in summer, whereas the concentration of Mo decreased. These variations were attributed to redox processes. During summer when the dissolved oxygen concentrations decrease, Mn, Cu, Cd and Pb are released into solution whereas Mo is immobilised. Like metals, variations in arsenic contents were not linked with discharge. Its similarity with phosphate distribution suggests similar controls involving phytoplankton uptake and release from sediments through organic matter mineralization.  相似文献   

14.
The Driver-Pressures-State-Impact-Response approach is applied to heavy metals in the Seine River catchment (65,000 km(2); 14 million people of which 10 million are aggregated within Paris megacity; 30% of French industrial and agricultural production). The contamination pattern at river mouth is established on the particulate material at different time scales: 1930-2000 for floodplain cores, 1980-2003 for suspended particulate matter (SPM) and bed-sediments, 1994-2003 for atmospheric fallout and annual flood deposits. The Seine has been among the most contaminated catchments with maximum contents recorded at 130 mg kg(-1) for Cd, 24 for Hg, 558 for Pb, 1620 for Zn, 347 for Cu, 275 for Cr and 150 for Ni. Today, the average levels for Cd (1.8 mg kg(-1)), Hg (1.08), Pb (108), Zn (370), Cu (99), Cr (123) and Ni (31) are much lower but still in the upper 90% of the global scale distribution (Cr and Ni excepted) and well above the natural background values determined on pre-historical deposits. All metal contents have decreased at least since 1955/65, well before metal emission regulations that started in the mid 1970's and the metal monitoring in the catchment that started in the early 1980's. In the last 20 y, major criteria changes for the management of contaminated particulates (treated urban sludge, agricultural soils, dredged sediments) have occurred. In the mid 1990's, there was a complete shift in the contamination assessment scales, from sediment management and water usage criteria to the good ecological state, now required by the 2000 European Directive. When comparing excess metal outputs, associated to river SPM, to the average metal demand within the catchment from 1950 to 2000, the leakage ratios decrease exponentially from 1950 to 2000 for Cd, Cr, Cu, Pb and Zn, meanwhile, a general increase of the demand is observed: the rate of recycling and/or treatment of metals within the anthroposphere has been improved ten-fold. Hg environmental trajectory is very specific: there is a marked decontamination from 1970 to 2000, but the leakage ratio remains very high (10 to 20%) during this period. Drivers and Pressures are poorly known prior to 1985; State evolution since 1935 has been reconstructed from flood plain cores analysis; Impacts were maximum between 1950 and 1970 but remained unknown due to analytical limitation and lack of awareness. Some Responses are lagging 10 y behind monitoring and have much evolved in the past 10 y.  相似文献   

15.
Gold mining in the Portovelo-Zaruma district in southern Ecuador is causing considerable environmental impacts; the most important ones are related to the discharge of cyanide, mercury and metal rich tailings into rivers of the Puyango catchment area. Cyanide and metal levels in rivers regularly exceed environmental quality criteria. The contamination impacts biodiversity, with cyanide causing a direct lethal effect on biota close to source and metal contaminants considerably reducing aquatic biodiversity further downstream. It is shown that the prevailing neutral or slightly alkaline conditions of the rivers ensure that metals are mainly associated with sediment. However, elevated metal levels in bottom living larvae collected from contaminated sites suggest that these sediment bound metals are readily bioavailable. Leaching experiments indicate that the relative ease by which metals are taken up by larvae is related to the speciation of sediment associated metals. It is further shown that large amounts of metals, which are bound to suspended sediment under ambient pH conditions, enter the dissolved and directly bioavailable state in more acidic conditions. Metal levels in carnivorous fish were found to be modestly elevated only, with the exception of mercury. Mercury levels exceeded 0.5 mg/kg in fish from both contaminated and uncontaminated sites, showing that both methylation and bioaccumulation of mercury are occurring in the Puyango river basin.  相似文献   

16.
Aquatic macrophytes play an important role in the nutrient dynamics of streams. As a result, there is much interest in their use as trophic indicators. However, the relationship between aquatic macrophytes and the trophic status of rivers is a complex one, partly because of the effects of a wide range of environmental variables and partly because submerged, rooted macrophytes can absorb nutrients from the river sediments and/or the water column. Experiments which have tried to establish the relative importance of sediments or water as sources of nutrients are inconclusive and further work is needed to establish how sediment nutrient characteristics vary within and among rivers (spatially and temporally) and the inter-relationships between sediment nutrients, water column chemistry and macrophytes. This paper presents the initial findings from a study of 17 lowland rivers in southern England which is exploring the spatial variability of sediment characteristics (total and inorganic phosphorus, total nitrogen, organic carbon, silt-clay fraction and organic matter content) and the relationship with aquatic macrophytes. The preliminary analysis indicates that although sediment characteristics are highly variable within 100-m river reaches, the variability across the 17 rivers is even greater; this is despite the limited geographic and trophic range of the study sites. The results presented in this paper also give some indication of the sediment characteristics associated with five macrophyte species but it is too early to ascribe sediment preferences for particular species.  相似文献   

17.
Grain-size distribution, major elements, nutrients and trace metals were determined in bed sediments and suspension collected at 10 representative sites along the river Po under normal and high flow conditions. Grain-size distribution and major element composition of suspension highlighted the presence of two distinct particle populations in the upper-middle Po (coarser particles, lower carbonate content) and in the lower Po (finer particles, higher carbonate content). This change partly reflects the geological differences between the two parts of the basin, and also the presence of a hydroelectric power plant at Isola Serafini (Piacenza). With respect to environmental quality issues, bed sediments and suspension provide similar results. A moderate nutrient pollution is found in all but the uppermost parts of the river basin, while the most significant inputs of trace metals appear to originate from the urban areas of Turin and Milan. Calculation of sediment enrichment factors identifies Cd, Cu, Hg and Zn as the most impacted elements by human activities. On the other hand, the high levels of Ni and Cr throughout the river seem to derive mainly from the presence of basic rocks in the upper and middle parts of the basin. Both nutrient and trace metal particulate concentrations substantially decrease under high flow conditions possibly due to "flushing" of contaminated bed sediments and resuspension of coarser material. Under normal flow conditions, water hydrochemistry and concentrations of some elements (As, Ca, Cr, Cu, K, Mg, Mn, Na, Ni, and Pb) in the dissolved phase (<0.45 microm) were also determined. Calculation of trace metals partition coefficients shows that the relative importance of the particulate and water phases varies in response to water hydrochemistry and suspended solid content, but that most elements achieve a conditional equilibrium in the lower stretches of the river Po. These results are the first of this kind reported for the whole river course and highlight the factors and mechanisms controlling the origin, mobility and fate of nutrients and trace metals in the river Po.  相似文献   

18.
In this paper, an assessment strategy is introduced which allows one to evaluate the ecological hazard of contaminated sediments in connection with the risk of in-stream erosion. Special techniques for sediment sampling, non-intrusive density profiling, and depth related measurement of erosion are presented, which, in combination with ecological aspects, lead to a comprehensive risk assessment of fluvial sediments. The strategy was applied to a lock-regulated reach of the River Neckar in Germany. The spatial pattern of contamination in the river reservoir was found to be remarkably heterogeneous. At some sites, very high heavy metal concentrations were detected at the sediment surface. A sudden increase in contamination with depth at other sites could be attributed to an erosional unconformity. The critical shear stress of erosion for old contaminated sediments is higher than for recently deposited material. Nevertheless, during major flood events, bottom shear stress in the river exceeds the critical shear stresses of erosion of all sediments. Accordingly, there is a substantial risk that old contaminated sediment can be mobilised from the reservoir and transported downstream.  相似文献   

19.
Significant areas in Flanders, Belgium exhibit moderate contamination with trace metals caused by disposal of contaminated dredged sediments. After disposal, the sediments develop into a soil-like material, on which vegetation is planted or develops spontaneously. Behaviour, cycling and ecosystem impacts of trace metals in calcareous dredged sediment disposal sites in Flanders is reviewed. Although soil physico-chemical properties favour a low metal bioavailability, pore water concentrations can be elevated compared to pore water in uncontaminated soils. While metal leaching is not considered to be of concern, several plants accumulate elevated levels of Cd and Zn in leaves. Also metal levels in soil dwelling organisms and small mammals, particularly Cd, are elevated compared to reference situations. This raises concern for an enhanced transfer of metals to the food chain. Future research should identify biological effects on organisms caused by the contamination. A comprehensive knowledge of metal behaviour in these sites is essential for developing appropriate management options for these sites.  相似文献   

20.
Organic and mineral pollutants have become part of today's urban environment. During a rain event, stormwater quality as well as the corresponding contaminant loads is affected by both atmospheric deposition and the various types of impervious surfaces (roads, rooftops, parking lots etc.) on which runoff occurs. This study provides results on stormwater pollution in Paris and its suburbs from three separate storm sewers (n = 20 samples). These results show that the stormwater had been contaminated by 55 chemical substances out of the 88 investigated. A particular attention was given to stormwater particle contamination. Concentrations are provided for: metals, PAHs, PCBs, organotins, alkylphenols, phthalates, pesticides, and VOCs. Our findings are among the first available in the literature since the relevant analyses were all conducted on both the particulate (P) and dissolved (D) phases. For most substances, particles from the three storm sewers were more heavily contaminated than dredged sediments and settleable particles from the Seine River. As a consequence of this finding, the release of untreated stormwater discharges may impact the receiving waters and contribute to sediment contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号