首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
采用三维电极电解处理经聚合氯化铝和聚丙烯烯胺絮凝气浮处理后的高浓度废乳化液,同时对比了二维电极电解法、芬顿氧化法处理效果。考察了电解电压、初始pH、电解时间、出水pH、活性炭使用次数等对COD去除率的影响,结果表明:三维电极电解法处理效果远优于二维电极电解,与芬顿氧化法相比具有明显的成本节约优势。在电解电压为18V,初始pH值为3,电解时间1h,出水pH值为10,活性炭重复使用12次的条件下,废乳化液COD去除率仍然达64%以上。  相似文献   

2.
三维电极-铁炭微电解法组合工艺处理黄连素废水   总被引:3,自引:1,他引:2  
该文研究了三维电极-铁炭微电解复合法对难降解有机物黄连素模拟废水的处理.结果表明三维电极电解技术对黄连素具有较高的脱色效果,在最佳处理条件下黄连素废水脱色率为95%,而COD的去除率仅为38.5%.三维电极与铁炭微电解法复合处理,则可以明显提高黄连素模拟废水COD去除率和废水的可生化性.在最佳条件下COD去除率达到72...  相似文献   

3.
三维电极电解阴离子表面活性剂废水的研究   总被引:4,自引:0,他引:4  
采用三维电极电解法对含阴离子表面活性剂(LAS)废水的处理进行了研究,考察了不同电极组合、槽电压、停留时间、电极间距及废水的pH值对降解效果的影响,并对电解机理作了初步探讨.实验表明:LAS废水处理的最佳工艺为:极间距2cm,槽压为8V,电解时间为40min.LAS、COD、TOC的去除率分别在94.5%、66.2%和58.7%以上.电极材料对去除率有很大影响.  相似文献   

4.
三维电极-电Fenton法处理甲醛模拟废水试验研究   总被引:1,自引:0,他引:1  
采用三维电极-电Fenton法处理模拟甲醛废水,考察了甲醛废水中有机物去除的影响因素及处理效果,优化了试验条件。正交试验结果表明,各因素对甲醛去除率影响程度大小依次为:电解时间〉pH4g〉电解电压〉极板间距〉甲醛初始浓度。最佳去除条件为:甲醛初始质量浓度为300mg/L,pH值为3,极板间距为2.0cm,电解电压为9V,电解时间为90min。在此条件下,甲醛去除率达到95.7%,COD。和TOC去除率分别迭91.5%和92.4%。三维电极一电Fenton法用于甲醛废水处理切实可行,效果明显,为实际废水处理提供了参考。  相似文献   

5.
三维电极技术预处理腈纶废水的试验研究   总被引:1,自引:0,他引:1  
采用三维电极技术处理难降解腈纶废水,通过单因素及正交试验考察了电解电压、反应时间以及pH对废水COD去除率和反应能耗的影响.试验结果表明,在电压为20V,电解时间为60 min,pH为5.0的条件下,三维电极对腈纶废水的COD去除率达到29%左右,废水的可生化性由0.28提高到0.41,处理每吨废水能耗为1.33 kW·h左右.  相似文献   

6.
陈武  杨昌柱  梅平  李良红 《水处理技术》2007,33(5):28-31,57
以模拟L-亮氨酸的废水为处理对象,研究影响三维电极去除废水COD的因素及三维电极的最佳操作条件,结果表明,主电极间距、粒子电极填充量、电解时间、电解电流及废水浓度等因素都对三维电极去除COD效率有显著影响,三维电极对模拟L-亮氨酸的废水COD去除率可达到87.9%~90%。说明三维电极处理L-亮氨酸的废水有一定的可行性。  相似文献   

7.
为了研究三维电极降解多组分氨基酸废水中各组分的规律和效果。采用三维电极处理多种氨基酸混合的模拟废水,结果表明,电解电流、电解时间、氨基酸混合比例和种类对混合废水中各组分降解及COD去除有显著影响;各组分降解由难到易依次是:L-亮氨酸〉L-酪氮酸〉L-精氨酸〉L-组氨酸〉L-半胱氨酸。三维电极对二组分、三组分、四组分及五组分氨基酸混合废水总降解率分别为59.01%、55.4%、50.6%及46.5%。COD去除率分别为90.8%、89.5%、88.1%及85.9%。说明三维电极对混合氨基酸废水有很好的处理效果。  相似文献   

8.
电化学法处理缫丝厂汰头废水的研究   总被引:1,自引:0,他引:1  
采用电解法预处理缫丝汰头废水,考察了阳极材料、电解极距、电极表面积、处理时间等因素对蛋白质去除率的影响。结果表明,采用铁作为阳极,石墨作为阴极,电解电压为8 V,电解极距为10 mm,电极表面积为20 cm2,处理时间为60 min,蛋白质去除率为53%,CODCr去除率为48%。  相似文献   

9.
三维阴极电解法处理含铜废水   总被引:1,自引:0,他引:1  
孙颖  王晓  张一婷 《电镀与精饰》2011,33(12):40-42,46
采用三维电极电解中试装置处理印制线路板含铜废水.考察了极间距、填充颗粒、电解电压及电解时间对铜去除效果的影响,并设计了回收铜的工艺.实验表明,适宜的运行条件为极间距4 cm,以填充体积2:1比例添加活性炭和直径2~3 mm玻璃珠,电解电压22 V,电解135 min,此时铜离子去除率为80.6%,电流为2.67 A,进...  相似文献   

10.
针对某炼油厂焦化含油废水的特点,开展了三维电极处理含油废水的试验研究,对处理时间、电压、活性炭填充量、极板间距及曝气量等工艺参数进行考察优化,再通过处理前后水样的宏观和微观形貌的对比分析以及GC-MS联用分析等,进一步评价三维电极对废水的净化处理效果.试验结果表明:三维电极处理焦化含油废水的优化工艺条件为处理时间180 min、电解电压30 V、活性炭填充量500 g、极板间距6 cm、曝气量1 L/min,此时除油率可达到96.73%.三维电极对焦化含油废水有较好的处理效果,基本实现了焦化含油废水的净化处理.  相似文献   

11.
采用泥浆法制备Fe3+-TiO2/AC复合材料,通过XRD和SEM对复合材料进行表征,以复合材料为粒子电极,石墨板为阴阳极,构建三维电极系统处理氨氮模拟废水,探究电解电压、电解质NaCl浓度、初始pH值及粒子电极投入量对氨氮去除的影响,并应用响应曲面法对处理废水的条件进行优化。结果表明:在电解电压为18 V,电解质NaCl浓度为6.7 g·L-1,溶液初始pH值为9.00,粒子电极投入量为10.0 g·L-1时,电解40 min后,氨氮去除率为96.86%。采用响应曲面法优化后,在电解电压为18 V,粒子电极投入量为9.9 g·L-1,初始pH值为9.10条件下,电解40 min后,氨氮去除率最佳为97.61%。以上研究结论可为氨氮废水的工业处理提供一定的参考。  相似文献   

12.
三硝基甲苯制备中所产生的废水含有剧毒性有机物,若不做适当处理再行排放,对环境与人类健康有严重危害.本文利用电解氧化法处理三硝基甲苯废水,并讨论电解电压、电解温度、通氧量与pH值等参量对其中有机物去除率的影响.实验结果表明,其最佳操作条件为电解电压6V、电解温度30℃、通氧量为100mL· min-1及pH=0时,经3h反应后有机物去除率可达94%,反应8h后有机物去除率可达100%.  相似文献   

13.
王玉飞  闫龙  陈碧  李健  王超 《当代化工》2016,(2):234-237
采用三维电极-电Fenton耦合法降解模拟苯酚废水,验证模拟苯酚废水降解过程中羟基自由基的存在,考察不同电压、起始p H值、铁粉加入量、曝气等因素对羟基自由基生成量的影响,实验结果表明:当溶液的p H为6.86(原溶液),加入3.0 g/300 m L Fe粉,5 V电压下1.5 L·min-1的曝气下电解30 min后,苯酚降解过程中羟基自由基的生成量最大。  相似文献   

14.
以DSA电极为阳极、钛电极为阴极构成电解池,对抗生素废水进行了催化氧化处理。单因素实验结果表明,当槽电压7.0 V、极板间距1 cm、初始pH=5、进水初始COD 3 000 mg/L、Na Cl投加质量浓度3.0 g、电解时间30 min时,COD去除率可达到49.66%,色度去除率达85.01%。正交试验分析,当槽电压7.0 V、电解时间60 min、初始pH=5、Na Cl投加质量浓度2.5 g/L时,其电解效果最佳,可为该制药废水生化性调节起到良好的作用。  相似文献   

15.
娄本浊 《陕西化工》2012,(9):1505-1507
用电解芬顿法处理三硝基甲苯废水,讨论Fe2+添加量、电解电压、处理温度、通氧量与pH值等对有机物去除率的影响。结果表明,Fe2+添加量为15 mg/L,电解电压为6 V,处理温度为50℃,通氧量为100 mL/min及pH=0时,反应3 h后,有机物去除率可达93%。  相似文献   

16.
印染废水二级出水中含有难生物降解的有毒有害物质,国家和地方制定了日益严格的污染物排放标准。这就要求企业对二级出水进行深度处理,实现废水重复利用。文章以广州某印染废水处理厂的二级出水为研究对象,利用三维电极法进行CODCr去除试验,考察了电解时间、直流电压、进水pH及曝气量对CODCr去除率的影响。试验表明:三维电极法对印染废水二级出水CODCr有良好的去除效果:当电解时间为15 min、直流电压为28 V、进水pH为3.5、曝气量为一般强度时,出水CODCr浓度可从88 mg/L降低到37 mg/L,对应的去除率为57.9%。  相似文献   

17.
甄晓华  王亚娥  李杰 《广东化工》2012,39(11):139-141
文章分别采用电解与三维电极法对腈纶废水进行处理,通过单因素及正交试验考察了电解电压、反应时间以及废水pH对COD去除率和反应能耗的影响。试验结果表明,在电压为20 V,电解时间为120 min,pH为5.0的条件下电解反应对腈纶分水COD去除率达到14.7%左右,处理每吨水能耗为2.62 kW·h左右;在电压为20 V,电解时间为60 min,pH为5.0的条件下三维电极对腈纶废水COD去除率达到29%左右,处理每吨水能耗为1.33 kW·h左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号