首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structured lipids were synthesized by interesterification of trilinolein and tricaproin with sn-1,3-specific (IM 60) and nonspecific (SP 435) lipases. The interesterification reaction was performed by incubating a 1:2 mole ratio of trilinolein and tricaproin in 3 mL hexane at 45°C for the IM 60 lipase from Rhizomucor miehei, and at 55°C for the SP 435 lipase from Candida antarctica. Reaction products were analyzed by reverse-phase high-performance liquid chromatography with an evaporative light-scattering detector. The fatty acids at the sn-2 position were identified after pancreatic lipase hydrolysis and analysis with a gas chromatograph. IM 60 lipase produced 53,5 mol% dicaproyllinolein (total carbon number = C33) and 22.2% monocaproyldilinolein (C45). SP 435 lipase produced 41% C33 and 18% C45. When caproic acid was used in place of tricaproin as the acyl donor, the IM 60 lipase produced 62.9% C33. The effects of variation in mole ratio, temperature, added water, solvent polarity, and time course on the interesterification reaction were also investigated. In the absence of organic solvent, IM 60 lipase produced 52.3% C33.  相似文献   

2.
A structured lipid (SL) with a substantial amount of palmitic acid at the sn‐2 position and enriched with capric acid (C), was produced in two enzymatic interesterification stages by using immobilized lipase, Lipozyme® TL IM (Novozymes North America Inc., Franklinton, NC, USA). The substrates for the reactions were high melting point palm stearin, high oleic sunflower oil and tricaprin. The SL was characterized for total and positional fatty acid profiles, triacylglycerol (TAG) molecular species, free fatty acid content, melting and crystallization profiles. The final SL contained 20.13 mol% of total palmitic acid, of which nearly 40 % was located at the sn‐2 position. The total capric acid content was 21.22 mol%, mostly at the sn‐1 and sn‐3 positions. The predominant TAGs in the SL were oleic–palmitic–oleic, POP and CLC. The melting completion and crystallization onset temperatures of the SL were 27.7 and 6.1 °C, respectively. The yield for the overall reaction was 90 wt%. This SL might be totally or partially used in commercial fat blends for infant formula.  相似文献   

3.
Two immobilized lipases, nonspecific SP435 from Candida antarctica and sn-1,3 specific IM60 from Rhizomucor miehei, were used as biocatalysts for the restructuring of borage oil (Borago officinalis L.) to incorporate capric acid (10:0, medium-chain fatty acid) and eicosapentaenoic acid (20:5n-3) with the free fatty acids as acyl donors. Transesterification (acidolysis) reactions were carried out in hexane, and the products were analyzed by gas-liquid chromatography. The fatty acid profiles of the modified borage oil were different from that of unmodified borage oil. Higher incorporation of 20:5n-3 (10.2%) and 10:0 (26.3%) was obtained with IM60 lipase, compared to 8.8 and 15.5%, respectively, with SP435 lipase. However, SP435 lipase was able to incorporate both 10:0 and 20:5n-3 fatty acids at the sn-2 position, but the IM60 lipase did not. Solvents with log P values between 3.5 and 4.5 supported the acidolysis reaction better than those with log P values between −0.33 and 3.0.  相似文献   

4.
Two systems were investigated and compared as models for making margarine-type fats. Two immobilized lipases, IM60 from Rhizomucor miehei and SP435 from Candida antarctica, were used to catalyze the transesterification of triolein with stearic acid and stearic acid methyl ester, respectively, in n-hexane. The optimal reaction temperature for both enzymes was 55°C at a mole ratio of triolein to acyl donor of 1:2. Equilibria were reached at 18 h for IM60 and 24 h for SP435. Analysis of the overall yield and incorporation of fatty acid at the sn-2 position indicated that the triacylglycerol products contained 38.4 and 16.2% 18:0 for acidolysis and 34.2 and 11.3% for interesterification reactions, respectively, at the 2-position. With SP435, the softest fat was produced after 18 h of incubation, and the hardest after 30 h. For IM60 system, 18 h of incubation gave the most plastic fat.  相似文献   

5.
Structured lipids (SL) were produced using menhaden oil and capric acid or ethyl caprate as the substrate. Enzymatic reaction conditions were optimized using the Taguchi method L9 orthogonal array with three substrate molar ratio levels of capric acid or ethyl caprate to menhaden oil (1:1, 2:1, and 3:1), three enzyme load levels (5, 10, and 15% [w/w]), three temperature levels (40, 50, and 60 °C), and three reaction times (12, 24, 36 hours). Recombinant lipase from Candida antarctica, Lipozyme® 435, and sn‐1,3 specific Rhizomucor miehei lipase, Lipozyme® RM IM (Novozymes North America, Inc., Franklinton, NC, USA), were used as biocatalysts in both acidolysis and interesterification reactions. Total and sn‐2 fatty acid compositions, triacylglycerol (TAG) molecular species, thermal behavior, and oxidative stability were compared. Optimal conditions for all reactions were 3:1 substrate molar ratio, 10% [w/w] enzyme load, 60 °C, and 16 hours reaction time. Reactions with ethyl caprate incorporated significantly more C10:0, at 30.76 ± 1.15 and 28.63 ± 2.37 mol% versus 19.50 ± 1.06 and 9.81 ± 1.51 mol%, respectively, for both Lipozyme® 435 and Lipozyme® RM IM, respectively. Reactions with ethyl caprate as substrate and Lipozyme® 435 as biocatalyst produced more of the desired medium‐long‐medium (MLM)‐type TAGs with polyunsaturated fatty acids (PUFA) at sn‐2 and C10:0 at sn‐1,3 positions.  相似文献   

6.
Structured lipids (SL) were synthesized by the interesterification reaction between medium-chain triacylglycerols and eicosapentaenoic acid (EPA) ethyl ester. The products were partially purified, and the fatty acid at thesn-2 position was determined after pancreatic lipase-catalyzed hydrolysis. The effect of additives (water and glycerol) on the rate of reaction was also investigated. Mol% EPA incorporated into the triacylglycerols was increased by adding water when trilaurin and tricaprylin were the substrates and IM 60 was the biocatalyst. With SP 435, EPA incorporation was always less with additional water than without water. The addition of glycerol (0.005 g or 0.01 g) improved interesterification catalyzed by IM 60 to some degree, but an excess amount (0.02 g) inhibited the reaction. The reaction with glycerol showed no significant difference with SP 435. After scale-up and fractionation by column chromatography, we could recover approximately 0.3–0.4 g of product/g of reaction products. After hydrolysis by pancreatic lipase, we can conclude that IM 60 has a high specificity forsn-1,3 positions. With SP 435 lipase, 34.8–39.3 mol% of EPA was found at thesn-2 position of the recovered SL.  相似文献   

7.
Three commercially available immobilized lipases, Novozym 435 from Candida antarctica, Lipozyme IM from Rhizomucor miehei, and Lipase PS-C from Pseudomonas cepacia, were used as biocatalysts for the interesterification of conjugated linoleic acid (CLA) ethyl ester and tricaprylin. The reactions were carried out in hexane, and the products were analyzed by gas-liquid chromatography. The effects of molar ratio, enzyme load, incubation time, and temperature on CLA incorporation were investigated. Novozym 435, as compared to Lipozyme IM and Lipase PC-C, showed the highest degree of CLA incorporation into tricaprylin. By hydrolysis with pancreatic lipase, it was found that Lipozyme IM and Lipase PS-C exhibited high selectivity for the sn-1,3 position of the triacylglycerol early in the interesterification, with small extents of incorporation of CLA into the sn-2 position, probably due to acyl migration, at later reaction times. A small extent of sn-1,3 selectivity during interesterification by Novozym 435 was observed.  相似文献   

8.
Enzymatic synthesis of position-specific low-calorie structured lipids   总被引:2,自引:0,他引:2  
An immobilized sn-1,3-specific lipase from Rhizomucor miehei (IM 60) was used to catalyze the interesterification of tristearin (C18:0) and tricaprin (C10:0) to produce low-calorie structured lipids (SL). Acceptable product yields were obtained from a 1:1 mole ratio of both triacylglycerols with 10% (w/w of reactants) of IM 60 in 3 mL hexane. The SL molecular species, based on total carbon number, were 44.2% C41 and 40.5% C49, with 3.8 and 11.5% unreacted tristearin C57 and tricaprin C27, respectively, remaining in the product mixture. The best yield of C41 species (44.3%) was obtained with zero added water. Tricaprylin (C8:0) was also successfully interesterified with tristearin in good yields at 1:1 mole ratio. Products were analyzed by reverse-phase high-performance liquid chromatography with an evaporative light-scattering detector. Reaction parameters, such as substrate mole ratio, enzyme load, time course, added water, reaction media, and enzyme reuse, were also investigated. Hydrolysis by pancreatic lipase revealed the specific fatty acids present at the sn-1,3 positions of SL. Biocatalysis Symposium Paper, presented at the AOCS Annual Meeting & Expo, Seattle, Washington. May 11–14, 1997.  相似文献   

9.
Two immobilized lipases, IM60 fromMucor miehei and SP435 fromCandida antarctica, were used as biocatalysts for the modification of trilinolein with n-3 polyunsaturated fatty acids (PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), by using their ethyl esters as acyl donors (EEPA and EDHA, respectively). Transesterification (ester-ester interchange) reactions were carried out in organic solvent. The products were analyzed according to their equivalent carbon number and polarity by reverse-phase high-performance liquid chromatography, and the fatty acid profiles were determined by gas-liquid chromatography. Modified triacylglycerol products contained 1 or 2 molecules of n-3 PUFA. With EEPA as the acyl donor, the total EPA product yields with IM60 and SP435 as biocatalysts were 79.6 and 81.4%, respectively. However, with EDHA as the acyl donor and IM60 and SP435 as biocatalysts, the total DHA product yields were 70.5 and 79.7%, respectively. Effects of reaction parameters, such as type of solvent, enzyme load, time course, and molar ratio of substrates on the n-3 PUFA incorporation, were followed with SP435 as the biocatalyst. High yields were obtained, even in the absence of organic solvent. These lipids do hold promise for specialty nutrition and other therapeutic uses.  相似文献   

10.
An infant formula fat analog with capric acid mostly esterified at the sn‐1,3 positions, and substantial amounts of palmitic, docosahexaenoic (DHA), and arachidonic (ARA) acids at the sn‐2 position, was prepared by physically blending enzymatically synthesized structured lipids (SL) with vegetable oils. The components of the blend included high sn‐2 palmitic acid SL enriched with capric acid (SLCA), canola oil (CAO), corn oil (CO), high sn‐2 DHA (DHAOm), and high sn‐2 ARA (ARAOm) enzymatically modified oils. Each component was proportionally blended to match the fatty acid profile of commercial fat blends used for infant formula. The infant formula fat analog (IFFA1) was characterized for total and positional fatty acids (FA), triacylglycerol (TAG) molecular species, thermal behavior, and tocopherol content. IFFA1 contained 17.37 mol% total palmitic acid of which nearly 35 % was located at the sn‐2 position. The total capric acid content was 13.93 mol%. The content of DHA and ARA were 0.49 mol% (48.18 % at sn‐2) and 0.57 mol% (35.80 % at sn‐2), respectively. The predominant TAG were OPO (24.09 %), POP (15.70 %), OOO (11.53 %), and CLC (7.79 %). The melting completion and crystallization onset temperatures were 18.65 and ?2.19 °C, respectively. The total tocopherol content was 566.45 μg/g. This product might be suitable for commercial production of infant formulas.  相似文献   

11.
Two different structured lipids (SL) were synthesized by transesterifying tristearin with caprylic acid (C8∶0) or oleic acid (C18∶1). The objective was to synthesize SL containing stearic acid (C18∶0) at the sn-2 position as possible nutritional and low-calorie fats. The reaction was catalyzed by IM60 lipase from Rhizomucor miehei in the presence of n-hexane. The effects of reaction parameters affecting the incorporation of caprylic acid into tristearin were compared with those for incorporating oleic acid into tristearin. For all parameters studied, oleic acid incorporation was higher than caprylic acid. The range of conditions favorable for synthesizing high yields of C8∶0-containing SL was narrower than for oleic acid. An incubation time of 12–24 h and an enzyme content of 5% (w/w total substrates) favored C8∶0 incorporation. The mole percentage of incorporated C18∶1 did not increase further at enzyme additions greater than 10%. C18∶1 incorporation decreased with the addition of more than 10% water (w/w total substrates) to the tristearin-oleic acid reaction mixture. Increasing the mole ratio of fatty acid (FA) to triacylglycerol increased oleic acid incorporation. The highest C8∶0 incorporation was obtained at a 1∶6 mole ratio of tristearin to FA. Positional analysis confirmed that C18∶0 remained at the sn-2 position of the synthesized SL. The melting profiles of tristearin-caprylic acid and tristearin-oleic acid SL displayed peaks between −20 to 30°C and −20 to 40°C, respectively. Their solid fat contents (∼25%) at 25°C suggest possible use in spreads or for inclusion with other fats in specialized blends.  相似文献   

12.
High sn‐2 docosahexaenoic and arachidonic acid oils (DHAOm and ARAOm, respectively) were produced independently via enzymatic interesterification of DHA‐rich and ARA‐rich single cell oils (DHASCO and ARASCO, respectively) using a mix of immobilized lipases, Lipozyme® TL IM and Novozym® 435 (weight ratio 1:1) as the biocatalyst system. Response surface methodology (RSM) was employed to model and optimize the reactions conditions. Three independent variables, namely reaction time, reaction temperature, and enzyme load, were investigated in DHAOm and ARAOm models. The prediction power of the model was further confirmed by solvent‐free scale‐up reactions of 100 g per batch. Final results showed that DHAOm contained 46.53 mol% of total DHA (49.70 % at the sn‐2 position), while ARAOm contained 47.25 mol% of total ARA (36.08 % at the sn‐2 position). This represents a significant increment in the amount of DHA and ARA at the sn‐2 position when compared to DHASCO (47.8 mol%; 30.30 % at the sn‐2) and ARASCO (47.79 mol%; 28.50 % at the sn‐2), respectively. These products have potential as additions to infant formulas where DHA and ARA supplementation is required.  相似文献   

13.
A mixture of beef tallow and rapeseed oil (1:1, wt/wt) was interesterified using sodium methoxide or immobilized lipases from Rhizomucor miehei (Lipozyme IM) and Candida antarctica (Novozym 435) as catalysts. Chemical interesterifications were carried out at 60 and 90 °C for 0.5 and 1.5 h using 0.4, 0.6 and 1.0 wt‐% CH3ONa. Enzymatic interesterifications were carried out at 60 °C for 8 h with Lipozyme IM or at 80 °C for 4 h with Novozym 435. The biocatalyst doses were kept constant (8 wt‐%), but the water content was varied from 2 to 10 wt‐%. The starting mixture and the interesterified products were separated by column chromatography into a pure triacylglycerol fraction and a nontriacylglycerol fraction, which contained free fatty acids, mono‐, and diacylglycerols. It was found that the concentration of free fatty acids and partial acylglycerols increased after interesterification. The slip melting points and solid fat contents of the triacylglycerol fractions isolated from interesterified fats were lower compared with the nonesterified blends. The sn‐2 and sn‐1,3 distribution of fatty acids in the TAG fractions before and after interesterification were determined. These distributions were random after chemical interesterification and near random when Novozym 435 was used. When Lipozyme IM was used, the fatty acid composition at the sn‐2 position remained practically unchanged, compared with the starting blend. The interesterified fats and isolated triacylglycerols had reduced oxidative stabilities, as assessed by Rancimat induction times. Addition of 0.02% BHA and BHT to the interesterified fats improved their stabilities.  相似文献   

14.
Lipase-catalyzed acidolysis of menhaden oil with a pinolenic acid (PLA) concentrate, prepared from pine nut oil, was studied in a solvent-free system. The PLA concentrate was prepared by urea complexation of the FA obtained by saponification of pine nut oil. Eight commercial lipases from different sources were screened for their ability to catalyze the acidolysis reaction. Two different types of structured lipids (SL) were synthesized. The first type, which has PLA residues as a primary FA residue at the sn-1,3 positions of the TAG, was synthesized using a 1,3-regiospecific lipase, namely, Lipozyme RM IM from Rhizomucor miehei. The second type of SL, which has PLA residues as a primary FA residue at both the sn-1,3 and sn-2 positions of the TAG, was synthesized using a nonspecific lipase, namely, Novozym 435 from Candida antarctica. The effects of variations in enzyme loading, temperature, and reaction time on PLA incorporation into the oil were monitored by GC analyses. The optimal temperature and enzyme loading for synthesis of the two types of SL were 50°C and 10% of the total weight of substrates for both enzymes. The optimal reaction time for the synthesis with Lipozyme RM IM was 16h, whereas the optimal reaction time for the synthesis mediated by Novozym 435 was 36 h. Pancreatic lipase-catalyzed sn-2 positional analyses were also carried out on the TAG samples.  相似文献   

15.
The ability of immobilized lipases IM60 fromMucor miehei and SP435 fromCandida antarctica to modify the fatty acid composition of selected vegetable oils by incorporation of n−3 polyunsaturated fatty acids into the vegetable oils was studied. The transesterification was carried out in organic solvent with free acid and ethyl esters of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as acyl donors. With free EPA as acyl donor, IM60 gave higher incorporation of EPA than SP435. However, when ethyl esters of EPA and DHA were the acyl donors, SP435 gave higher incorporation of EPA and DHA than IM60. When IM60 and free acid were used, the addition of 5 μL water increased EPA incorporation into soybean oil by 4.9%. With ethyl ester of EPA as acyl donor, addition of 2 μL water increased EPA incorporation by 3.9%. For SP435, addition of water up to 2μL resulted in increased EPA incorporation, but the incorporation declined when the added water exceeded this amount. The addition of water increased the EPA incorporation into Trisun 90 after 24 h reaction but not the reaction rate at early stages of the reaction.  相似文献   

16.
Lipase regioselectivity is the ability to distinguish between primary (i.e., sn-1,3) and secondary (sn-2) ester functionalities in a triacylglycerol molecule, which is of importance in the manufacture of structured lipids. Unlike existing methods of assessment, which utilize hydrolysis reactions, an alternative technique to assess the regioselectivity of lipases in triacylglycerol transesterification reactions has been developed. An acidolysis reaction is performed between triolein and decanoic, lauric, or stearic acids under conditions that minimize acyl migration, and products are analyzed by silver-ion complexation liquid chromatography, enabling detection of specific triacylglycerol positional isomers. From the rate of formation of these isomers the relative selectivity of the lipase for sn-2 and sn-1,3 ester bonds is determined. With lipases known to lack regioselectivity, the rate of reaction at sn-2 was similar to that at sn-1,3 from the start of the reaction. With sn-1,3 selective lipases, the formation of triacylglycerol isomers with decanoic acid in the secondary position was not detected at any point in the reaction. Regioselectivity as a function of reaction progress was monitored. Two lipases from the genus Pseudomonas exhibited activity toward all positions, but the rate at sn-2 was much reduced, and no incorporation of decanoic acid into this position was detectable until a high degree of conversion had been achieved.  相似文献   

17.
A structured lipid (SL) with a high amount of sn‐2 palmitic acid was synthesized from anhydrous milkfat and was then enriched with docosahexaenoic (DHA) and arachidonic (ARA) acids using an immobilized lipase. Three different methods were compared including physical blending, enzymatic interesterification, and enzymatic acidolysis. Products were compared with respect to differences in fatty acid profiles, reaction times, antioxidant contents, oxidative stability, melting and crystallization profiles, and reaction yields. The acidolysis method was the least suitable for the synthesis of desired product because of a low reaction yield, low incorporation of DHA, low oxidative stability, and the extra processing steps required. The physical blending and interesterification methods were suitable, but the interesterification product (IE‐SL) had higher amounts of ARA at the sn‐2 position. The IE‐SL contained total ARA and DHA of 0.63 and 0.50 mol%, and 0.55 and 0.46 mol% at the sn‐2 position, respectively. The IE‐SL also contained 44.97 mol% sn‐2 palmitic acid. The reaction yield for the IE‐SL was 91.84 %, and its melting completion and crystallization onset temperatures were 43.1 and 27.1 °C, respectively. This SL might be totally or partially used in commercial fat blends for infant formula.  相似文献   

18.
Structured lipids (SLs) containing palmitic, oleic, and docosahexaenoic acids for possible use in infant formulas were synthesized by enzymatic acidolysis reactions. The substrates used were tripalmitin, extra virgin olive oil free fatty acids (EVOOFFA), and docosahexaenoic acid single cell oil free fatty acids (DHASCOFFA) in 1:1:1, 1:2:1, 1:3:2, 1:4:2, and 1:5:1 molar ratios. Reactions were carried out at 65 °C for 24 h using Lipozyme® TL IM lipase. The products were analyzed for total and positional fatty acids by GC-FID, triacylglycerol (TAG) molecular species by HPLC-ELSD, and thermal behavior by DSC. The SLs, SL132, SL142, and SL151 had desirable fatty acid distribution for infant formula use with nearly 60 mol% palmitic acid at the sn-2 position and oleic acid predominantly at the sn-1,3 positions. The total DHA content of SL132, SL142, and SL151 were 7.54, 6.72, and 5.89 mol%, respectively. The major TAG molecular species in the SLs were PPP, OPO, and PPO. The melting completion temperature of SL132 was 37.1, 35.2 °C in SL142, and 32.9 °C in SL151. The SLs synthesized in this study have potential use in infant formulas.  相似文献   

19.
Enzyme catalyzed interesterification (EIE) of pine seed oil (PSO) and a fully hydrogenated soybean oil (FHSBO) were studied in batch reactors in solvent-free media to prepare different semisolid fats rich in polyunsaturated fatty acids (PUFA). Optimal operation conditions found were: 10 % (w/w) enzyme loading, 75 °C and magnetic agitation at 300 rpm. Quasi-equilibrium conditions were reached after 2, 3 and 6 h, when immobilized lipases from Thermomyces lanuginosus (Lipozyme® TL IM), Candida antarctica B. (Novozym® 435) and Rhizomucor miehei (Lipozyme® RM IM) from Novozymes A/S (Bagsvaerd, Denmark) were employed, respectively. Similar distributions of unsaturated to saturated fatty acid (UFA/SFA) residues along the glycerol backbone of the fat products were obtained with both non-selective and sn-1(3) regioselective lipases due to significant spontaneous acyl migration during the reaction. The products had higher UFA/SFA ratios at the sn-2 position (2.4–2.5, 1.4–1.7, and 0.5–0.8 for the trials involving 20, 40 and 70 % FHSBO, w/w, respectively) than the corresponding physical blends (0.8, 0.4 and 0.5, respectively). Fat products containing 3.1–11.6 % (w/w) pinolenic acid (Pn) and 16.1–35.7 % (w/w) linoleic acid (L) at the sn-2 position were prepared. The free acid contents of EIE products prepared with Lipozyme® TL IM and Novozym® 435 were 6.1–6.4 and 2.5–2.6, respectively. Residual activities of Lipozyme® TL IM and Novozym® 435 diminish by ca. 20 % after 9 reaction cycles.  相似文献   

20.
Lipase-catalyzed acidolysis of a modified pine nut oil (MPNO)—the pine nut oil was obtained from Pinus koraiensis Siebold &; Zucch.—with capric acid was studied in a continuous packed bed reactor (PBR) using Lipozyme RM IM from Rhizomucor miehei as a biocatalyst. The MPNO containing pinolenic acid (PLA) at the sn-2 position of the triacylglycerol (TAG) backbone was prepared by lipase-catalyzed redistribution of pine nut oil using Novozym 435 from Candida antarctica. The effects of the water content in the reaction mixture and the molar ratio of substrates on the extent of the acidolysis reaction as a function of residence time in a PBR were investigated. The water content of the reaction mixture significantly influenced both the rate of acidolysis and the degree of acyl migration, but the molar ratio of substrates affected only the rate of acidolysis. The optimum water content and molar ratio for synthesis of the structured lipid containing PLA at the sn-2 position and capric acid at the sn-1,3 positions of the TAG backbone were 0.04%, and 1:5 (MPNO to capric acid), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号