首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文在NMS-Ⅱ磁粉生产设备上,研究非晶晶化工艺因素(快淬速度、晶化温度和晶化时间)对Nd2(Fe,C0,Zr)14B磁粉磁性能和组织的影响.并通过振动样品磁强计(VSM)、x射线衍射仪(XRD)、透射电子显微镜(TEM)等分析工艺因素对Nd2(Fe,Co,Zr)14B磁粉的磁性能及纳米晶形成的影响规律.经分析确定较好...  相似文献   

2.
R-Fe-B系化合物:Nd-Fe-B系磁体目前已大量用于音圈马达、步进马达等。为了不断提高性能,现已开发了各种生产工艺。(1)粉末烧结法:Nd-Fe-B烧结磁体,为提高性能正致力于增加Nd2Fe14B主相并通过控制富硼相和富钕相来实现高性能化,在烧结过程中产生的波相量起着很重要的作用。(2)快淬薄带法:此法生产的Nd-Fe-B粉末广泛用于制造各向同性粘结磁体,为提高性能,通过添加锆、钒、铝、硅等元素制取粒径数十nm的微晶,可得到(BH)max>160kJ/m’的薄带磁体。例如(Nd。。Pr。。)sEe,‘CosB,。V;。快淬薄带(晶粒平…  相似文献   

3.
利用熔体快淬和晶化处理的方法制备了快淬Fe3B/Nd2Fe14B永磁材料。采用XRD,DTA,VSM等方法对合金的晶化行为和磁性能进行研究。结果表明:对于Fe3B/Nd2Fe14B熔体快淬永磁粉末,升温速率对各相的析出和分解温度有一定的影响。完全过淬的Nd4.5Fe77B18.5和Nd4Fe77Cr0.5B18.5合金熔体快淬粉在进行973K,7min晶化处理过程中,首先形成Nd2Fe23B3相,然后Nd2Fe23B3相发生分解,其产物为Fe3B/Nd2Fe14B,此后再没有发生其它的相转变。当晶化温度大于953K,保温10min后,样品的剩磁、矫顽力和最大磁能积明显提高。微量元素Cr的添加对相转变温度有影响,同时可以细化晶粒,提高矫顽力,从而改善材料的永磁性能。  相似文献   

4.
本文在NMS-Ⅱ磁粉生产设备上,研究非晶晶化工艺因素(快淬速度、晶化温度和晶化时间)对Nd2(Fe,Co,Zr)14B磁粉磁性能和组织的影响。并通过振动样品磁强计(VSM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)等分析工艺因素对Nd2(Fe,Co,Zr)14B磁粉的磁性能及纳米晶形成的影响规律。经分析确定较好的工艺为:以17 m.s-1速度快淬获得非晶并粉碎,随后氩气保护下730℃晶化20 min;获得的磁性能为:Br=7.620 kGsj、Hc=8.321 kOe(、BH)max=10.019 MGOe。  相似文献   

5.
在快冷形成的各向同性纳米晶NdFeB合金中已观察到超过理论极限值 (NdFeB为 0 8T)的高剩磁。韩国学者报道了在具有极低钕含量的快冷形成的Nd2 Fe80 B18合金中观察到的软磁相与硬磁相之间的交换耦合 ,也报道熔体快淬Nd10 Fe82 B8合金中软磁相与硬磁相交换耦合的证据及剩磁和矫顽力在 4 2K~ 30 0K之间的温度依赖关系。在氩气保护下用单辊技术制备了熔体快淬Nd2 Fe80 B18、Nd4 4Fe80 4B15 2 、Nd10 Fe82 B8和NdBFe11B10 合金。快淬带在 1 0 -4 乇真空下于 873K~ 1 0 73K退火 1 0min。用热磁法和X射线衍射对磁性相进行了分析…  相似文献   

6.
研究了快淬速度对熔体快淬法制备Nd10Fe81Co3B6薄带微结构及磁性能的影响。结果表明,随着快淬速度的增加,薄带中非晶相含量增加。快淬薄带在800 ℃晶化处理10 min后,15 m/s淬速的薄带基本由粒径大于50 nm的Nd2(Fe,Co)14B与粒径小于25 nm的Fe7Co3相组成,两相交换耦合作用较弱,而50 m/s淬速的薄带中仍含有大量的非晶相,使得薄带的剩磁减小,但矫顽力没有明显降低;35 m/s淬速的薄带退火后晶化完好,两相交换耦合作用最好,矫顽力达到249 928 A/m,剩磁达到84.3 A·m2/kg。不同快淬速度薄带中主相Nd2(Fe,Co)14B的居里温度基本相同,约为630 K。  相似文献   

7.
采用快淬法制备了镨基(Nd,Pr)10.5-x Dyx Fe83.5B6(x=0.0,0.5,1.0,1.5,2.0,2.5)系列粘结磁体,研究了Dy元素添加对快淬合金显微组织结构、磁性能及快淬薄带热稳定性的影响。与Nd2Fe14B相比,硬磁相Dy2Fe14B具有较高的磁晶各向异性场HA和较低的饱和磁极化强度Js,因此,Dy元素添加能显著提高合金的内禀矫顽力Hcj,但会降低合金的剩磁Br。Dy元素替代Nd/Pr元素,增强了快淬薄带的热稳定性,提高了晶化退火温度。较高的晶化退火温度,使快淬薄带中已经形成的微晶更容易长大,形成一些粗大晶粒,降低了粘结磁体的磁性能。1.0%是较佳的Dy元素添加量,(Nd,Pr)9.5Dy1Fe83.5B6合金快淬粘结磁体的最大磁能积(BH)max为71.6 k J/m3,剩磁Br为0.638 T,内禀矫顽力Hcj为611 k A/m。  相似文献   

8.
采用快淬法制备了镨基(Nd,Pr)10.5-xDyxFe83.5B6 (x=0,1,2)系列粘结磁体,测定了快淬条带晶化转变温度,研究了添加Dy元素对快淬合金条带晶化转变温度的影响。合金中添加Dy元素,快淬态条带晶化过程中非晶态向晶态转变的开始温度及结束温度提高,转变的温度区间增大。由于热稳定性的提高,条带晶化退火需要采用较高的温度。添加2%Dy元素的(Nd,Pr)8.5Dy2Fe83.5B6合金,最佳退火温度比 (Nd,Pr)9.5Dy1Fe83.5B6和(Nd,Pr)10.5Fe83.5B6分别提高了15和30 ℃。添加Dy元素的粘结磁体,内禀矫顽力Hcj增加,但剩磁Br下降,实验制备的(Nd,Pr)9.5Dy1Fe83.5B6合金磁体的磁性能为Br=0.638 T,Hcj=611 kA/m,(BH)m=71.6 kJ/m3  相似文献   

9.
采用快淬法制备了镨基(Nd,Pr)10.5-x Dyx Fe83.5B6(x=0.0,0.5,1.0,1.5,2.0,2.5)系列粘结磁体,研究了Dy元素添加对快淬合金显微组织结构、磁性能及快淬薄带热稳定性的影响。与Nd2Fe14B相比,硬磁相Dy2Fe14B具有较高的磁晶各向异性场HA和较低的饱和磁极化强度Js,因此,Dy元素添加能显著提高合金的内禀矫顽力Hcj,但会降低合金的剩磁Br。Dy元素替代Nd/Pr元素,增强了快淬薄带的热稳定性,提高了晶化退火温度。较高的晶化退火温度,使快淬薄带中已经形成的微晶更容易长大,形成一些粗大晶粒,降低了粘结磁体的磁性能。1.0%是较佳的Dy元素添加量,(Nd,Pr)9.5Dy1Fe83.5B6合金快淬粘结磁体的最大磁能积(BH)max为71.6 k J/m3,剩磁Br为0.638 T,内禀矫顽力Hcj为611 k A/m。  相似文献   

10.
采用熔体快淬法制备Nd2Fe23B3合金材料,经不同温度和保温时间热处理,研究了热处理工艺对其磁性能的影响。结果表明:快淬速度为25m/s时所制备的Nd—Fe—B非晶态物质,在热处理温度低于600℃时磁性能无明显提高;当温度达650℃、保温10min时,Nd2Fe23B3合金磁性达到最佳,但随热处理时间及温度的增加,材料磁综合性能呈下降趋势。  相似文献   

11.
采用熔体快淬法制备了成分为(Nd0.4Pr0.6)9Fe76B15和(Nd0.4Pr0.6)9Fe72Ti4B15-yCy(y=0-4)的合金薄带,研究了Ti和C含量对快淬带非晶形成、晶化过程及磁性能的影响。结果表明:Ti和C的添加极大地促进了快淬带的非晶形成能力。随C含量增加,非晶形成能力增强,当y=4时,只需要7m/s辊速就可以得到完全非晶,最佳热处理后磁性能达到:Br=0.88T,Hci=618kA/m,(BH)max=109.8kJ/m3。研究还表明,添加Ti元素可以避免(Nd0.4Pr0.6)9Fe76B15非晶晶化过程中(Nd,Pr)2Fe23B3亚稳相和(Nd,Pr)1.1Fe4B4相的生成,从而大大提高矫顽力。(Nd0.4Pr0.6)9Fe76B15合金的晶化过程为:Amorphous phase(A)→(Nd,Pr)2Fe23B3→(Nd,Pr)2Fe14B+α-Fe→(Nd,Pr)2Fe14B+(Nd,Pr)1.1Fe4B4+α-Fe。而(Nd0.4Pr0.6)9Fe72Ti4B15合金的晶化过程为:Amorhous phase(A)→α-Fe+A′→(Nd,Pr)2Fe14B+α-Fe+Fe3B。  相似文献   

12.
利用化学法制备Nd Fe B中间体,再通过两级还原退火成功制备了主相为Nd2Fe14B的Nd Fe B磁粉。采用X射线衍射(XRD)、透射电镜(TEM)及附带的X射线能谱仪(EDS)、差示扫描量热仪(DSC)和振动样品磁强计(VSM)等表征手段对样品的物相组成、微观组织结构、不同温度的相变和磁性能进行了分析,研究了Nd2Fe14B磁粉的形成过程。结果表明:采用化学法成功合成了分散良好的纳米尺寸的Nd Fe B中间体,中间体由球状Fe3O4颗粒和絮状物的Nd、B元素有机物配位体组成;中间体经过两级还原退火转变为Nd Fe B磁粉,通过800℃的一级还原退火使Nd Fe B中间体转化成NdFeO3、B_2O_3、Nd2O3和α-Fe相;二级还原退火在Ca H2辅助下的反应过程:首先B2O3在501℃下被还原成B相,接着678℃时,Nd2O3和Nd Fe O3被还原以形成α-Fe和Nd H2相,最后895℃时,B、Nd H2和α-Fe发生合金化反应形成Nd2Fe14B磁粉。  相似文献   

13.
用熔体快淬法制备了高性能纳米双相耦合Nd2Fe14B/α-Fe磁体,研究了Cu/Ti复合添加对Nd2Fe14B/α-Fe纳米双相磁体磁性能和相分解的影响,实验结果表明,Cu和Ti复合添加可提高快淬带的晶化温度,并且改变α-Fe相析出方式,α-Fe直接从TbCu7结构的亚稳相分解中析出,而不是从非晶相中析出,这有利于形成α-Fe相晶粒细小且均匀分布的微结构,其最优磁性能为Hc=384kA/m(4.8kOe),σ=110Am^2/kg(110emu/g),(BH)max=120kJ/m^3(15MGOe)。  相似文献   

14.
尝试用激光晶化法制备纳米双相Nd2Fe14B/Fe3B永磁体。Nd45Fe77B185快淬非晶薄带经过扫描速度为100-480mm/min激光扫描后,薄滞的非晶组织发生了晶化,Nd2Fe14B相的平均晶粒尺寸44nm,Fe3B相的平均晶粒尺寸40nm。  相似文献   

15.
对低稀土含量的Nd6Fe91B3合金进行熔体快淬处理,制备了由α-Fe相和少量的Nd2Fe14B相组成的纳米复相材料,并对其进行球磨处理25h。研究了快淬速度对淬态合金的相组成、微观结构、微波电磁性能的影响规律。研究结果表明,随着淬度的提高,淬态合金中高磁晶各向异性的Nd2Fe14B相逐渐减少,材料的自然共振频率向低频移动,但样品微波磁导率随淬速的提高而升高。淬速为40m/s的样品微波磁导率虚部在4.17GHz获得最大值μ"rmax=4.66,其实部在1.55GHz获得最大值μ’max=7.88。同时,低稀土含量的纳米复相α-Fe/Nd2Fe14B材料具有良好的微波电特性,其复介电常数在2GHz附近出现共振。由于磁损耗和电损耗共同作用,有利于该材料在GHz频段电磁波吸收材料中的应用。  相似文献   

16.
本文对成分为Nd_(12)Fe_(77)Co_5B_6的合金进行快淬后晶化处理,得到的薄片和磁粉用振动样品磁强计(VSM)和X射线衍射仪(XRD)进行性能和结构分析,发现在晶化处理后的薄片中出现明显的磁各向异性。其方向为Nd2Fe(14)B晶体的易磁化轴-c轴方向,这种各向异性有利于获得高性能的粘结快淬NdFeB磁体.  相似文献   

17.
<正> 被誉为当代“磁王”的Nd—Fe—B永磁材料,由于具有优良的磁性能,以及原料丰富、成本较低等原因,自1983年问世以来,得到迅速的发展。 Nd—Fe—B系磁体的制造方法有烧结法、铸造法、快淬热压法、快淬热变形法和粘结法等。粘结法是将Nd—Fe-B永磁材料的粉末与粘结剂均匀混合后,用适当的成型方法,制成粘结磁体的。粘结法的特点是产品尺寸精度高,可以一次成型,不需要二次加工,原料利用率高,成本低,产品机械强度高,  相似文献   

18.
对低稀土含量的Nd6Fe91B3合金进行熔体快淬处理,制备了由a-Fe相和少量的Nd2Fe14B相组成的纳米复相材料,并对其进行球磨处理25 h.研究了快淬速度对淬态合金的相组成、微观结构、微波电磁性能的影响规律.研究结果表明,随着淬度的提高,淬态合金中高磁晶各向异性的Nd2Fe14B相逐渐减少,材料的自然共振频率向低频移动,但样品微波磁导率随淬速的提高而升高.淬速为40 m/s的样品微波磁导率虚部在4.17 GHz获得最大值μrmax=4.66,其实部在1.55 GHz获得最大值μmax =7.88.同时,低稀土含量的纳米复相α-Fe/Nd2Fe14B材料具有良好的微波电特性,其复介电常数在2 GHz附近出现共振.由于磁损耗和电损耗共同作用,有利于该材料在GHz频段电磁波吸收材料中的应用.  相似文献   

19.
采用熔体快淬法制备Nd2Fe23B3合金材料,经不同温度和保温时间热处理,研究了热处理工艺对其磁性能的影响。结果表明:快淬速度为25m/s时所制备的Nd-Fe-B非晶态物质,在热处理温度低于600℃时磁性能无明显提高;当温度达650℃、保温10min时,Nd2Fe23B3合金磁性达到最佳,但随热处理时间及温度的增加,材料磁综合性能呈下降趋势。  相似文献   

20.
目前熔体旋淬(即快淬或急冷)技术已广泛用于软磁、硬磁非晶、纳米晶合金的制备,很多研究表明合金成分及快淬工艺参数(如辊面速度)对合金性能有重要影响。G Ausanio等研究了快淬Nd90 -xFexAl10 合金性能与成分和工艺参数的关系。母合金用99 99%纯金属在Ar气氛中电孤炉熔炼,并在Ar气氛中单辊快淬成薄带。检测了薄带尺寸及组织结构结果如下表所列。样品名成分宽度/mm厚度/ μm辊面速度/m·s- 1 形貌晶粒尺寸/nmAl Nd55Fe35Al1 0 2 2 5 3 5 非晶基体中有极少量结晶体40A2 Nd55Fe35Al1 0 4115 2 5结晶10 0B1Nd50 Fe4 0 Al1 0 2 2 5 3 5 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号