共查询到19条相似文献,搜索用时 78 毫秒
1.
提出了一种求解约束函数优化问题的方法.它不使用传统的惩罚函数,也不区分可行解和不可行解.新的演化算法将约束优化问题转换成两个目标优化问题,其中一个为原问题的目标函数,另一个为违反约束条件的程度函数.利用多目标优化问题中的Pareto优于关系,定义个体Pareto强度值指标以便对个体进行排序选优,根据Pareto强度值排序和最小代数代沟模型设计出新的实数编码遗传算法.对常见测试函数的数值实验证实了新方法的有效性、通用性和稳健性,其性能优于现有的一些演化算法.特别是对于一些既有等式约束又有不等式约束的复杂非线性规划问题,该算法获得了更高精度的解. 相似文献
2.
MO Hai-fang 《数字社区&智能家居》2008,(20)
演化算法因其内在的并行行,在求解多目标优化问题时具有独特的优势。本文介绍多目标演化算法的基本原理,并详细讨论基于Pareto最优概念的多目标演化算法。 相似文献
3.
多目标优化的演化算法 总被引:57,自引:2,他引:57
近年来.多目标优化问题求解已成为演化计算的一个重要研究方向,而基于Pareto最优概念的多目标演化算法则是当前演化计算的研究热点.多目标演化算法的研究目标是使算法种群快速收敛并均匀分布于问题的非劣最优域.该文在比较与分析多目标优化的演化算法发展的历史基础上,介绍基于Pareto最优概念的多目标演化算法中的一些主要技术与理论结果,并具体以多目标遗传算法为代表,详细介绍了基于偏好的个体排序、适应值赋值以及共享函数与小生境等技术.此外,指出并阐释了值得进一步研究的相关问题. 相似文献
4.
基于Pareto的多目标优化免疫算法 总被引:2,自引:0,他引:2
免疫算法具有搜索效率高、避免过早收敛、群体优化、保持个体多样性等优点。将其应用于多目标优化问题,建立了一种新型的基于Pareto的多目标优化免疫算法(MOIA)。算法中,将优化问题的可行解对应抗体,优化问题的目标函数对应抗原,Pareto最优解被保存在记忆细胞集中,并利用有别于聚类的邻近排挤算法对其进行不断更新,进而获得分布均匀的Pareto最优解。文章最后,对MOIA算法与文献[3]中SPEA算法进行仿真,通过比较两者的收敛性和分布性,得到了MOIA优于SPEA的结论。 相似文献
5.
基于演化算法实现多目标优化的岛屿迁徙模型 总被引:2,自引:0,他引:2
多目标演化算法(MOEA)利用种群策略,尽可能地找出多目标问题的Pareto最优集供决策者选择,为决策者提供了更大的选择余地,与其它传统的方法相比有了很大的改进.但提供大量选择的同时,存在着不能为决策者提供一定的指导性信息,不能反映决策者的偏好,可扩展性差等问题.本文提出了一个新的多目标演化算法(MOEA)计算模型…岛屿迁徙模型,该模型体现了一种全新的多目标演化优化的求解思想,对多目标优化问题的最优解集作了新的定义.数值试验结果表明,岛屿迁徙模型在求解MOP时有效地解决了以上问题,并且存在进一步改进的潜力. 相似文献
6.
多目标优化问题的有效Pareto最优集 总被引:2,自引:0,他引:2
多目标优化问题求解是当前演化计算的一个重要研究方向,而基于Pareto最优概念的遗传算法更是研究的重点,然而,遗传算法在解决多目标优化问题上的缺陷却使得其往往得不到一个令人满意的解。在对该类算法研究的基础上提出了衡量Pareto最优解集的标准,并对如何满足这个标准提出了建议。 相似文献
7.
8.
为了提高非劣解向Pareto最优前沿收敛的速度及进一步提高解的精度,在设计了一种新的杂交算子并改进了NSGA-Ⅱ的拥挤操作的基础上,提出了一种基于分级策略的多目标演化算法。数值实验表明,新算法能够非常高效地处理高维的最优前沿为凸的、非凸的和不连续前沿的多目标测试函数,得到的非劣解具有很好的分布性质。但在处理高维的具有太多局部最优前沿的多峰函数时极易陷入局部最优前沿。 相似文献
9.
遗传算法可有效求解多目标优化问题中的Pareto最优解,并利用MATLAB进行了仿真验证。 相似文献
10.
11.
一个用于多目标优化的进化规划算法 总被引:4,自引:0,他引:4
进化计算的群体搜索机制为多目标优化问题的直接求解提供了途径。本文将多目标遗传算法中的一些技术用于进化规划,提出一个多目标进化规划算法,并给出计算实例。 相似文献
12.
WU Ai-hua 《数字社区&智能家居》2008,(36)
该文针对多目标蚁群遗传算法(MOAGA)解集边界分布不均的问题,提出改进算法,解决了连续空间中带约束条件多目标优化问题。改进算法在基本MOAGA算法的基础上,在选择中引入一定比例的边界决策、单目标最优决策,并提高边界决策的交叉率。实验证明,改进算法解决了基本算法解集分布边界疏中间密的问题,并且能更快的获得散布性较好的Pareto最优解集。 相似文献
13.
系统分析目前多目标进化算法(MOEAs)分布度评价指标的特点和不足,提出一种基于Delaunay三角剖分的分布度评价指标。该指标将基于邻域和基于距离的评价思想相结合,利用Delaunay三角网最近邻与邻接性的特点实现自主邻域划分。采用空间映射的方法,有效减少MOEAs解集非支配关系对种群分布度评价的影响。测试结果表明该指标能准确反映MOEAs解集的分布性。 相似文献
14.
15.
多目标优化问题是演化计算领域的一个新热点。提出了一种求解Pareto最优解集的新算法,它既能较快地收敛,又能有效保持种群的多样性。新算法引入了“约束占优”的概念;采用多父体杂交算子(一种多父体非凸线性组合算子),最小淘汰压力策略(每次只淘汰群体中的一个最差个体),以及适应值共享的niche技术,这样既保证了近似解集对Pareto前沿的逼近,又保持了解集分布的均匀性。对一些代表性的BenchMark问题(包括凸的与非凸的、连续的与间断的、带约束的与不带约束的各种问题)数值试验都取得了很好的结果。 相似文献
16.
提出一种基于实数编码处理约束优化问题的线性算法,并对其复杂度和收敛性进行分析.该算法将约束优化问题的高维搜索空间通过线性变换映射到二维空间,在二维空间中探索原优化问题的解,从数学分析的角度给出一种线性适应度函数.算法中融入一种基于密度函数的交叉算子和变异算法,采用基于分级聚类的平均联接方式以维持Pareto最优解集个体数目.3组典型优化问题的测试表明,该算法是可行和有效的,解集分布的均匀性与多样性均较理想. 相似文献
17.
提出一种新的多目标演化算法——基于斜率淘汰策略的多目标演化算法。利用基于斜率的淘汰策略,在演化过程中能以较低的时间复杂度更新精英空间、保存精英个体(Elitist),且取得的解数量大,既保证了近似解集对Pareto前沿的逼近,又很好地保持了解集分布的均匀性。对于一些代表性的Benck Mark问题,数值试验都取得了非常好的效果。 相似文献
18.
《自动化博览》2011,(Z2):145-150
In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the non-dominated set as well as the diversity of population in multi-objective problems,in this paper,a Novel Cloud -based quantum -inspired multi-objective evolutionary Algorithm(CQMEA) is proposed.CQMEA is proposed by employing the concept and principles of Cloud theory.The algorithm utilizes the random orientation and stability of the cloud model,uses a self-adaptive mechanism with cloud model of Quantum gates updating strategy to implement global search efficient.By using the self-adaptive mechanism and the better solution which is determined by the membership function uncertainly,Compared with several well-known algorithms such as NSGA-Ⅱ,QMEA.Experimental results show that(CQMEA) is more effective than QMEA and NSGA -Ⅱ. 相似文献
19.
多任务进化(EMT)是进化计算领域的一个新兴研究方向,区别于传统的单任务搜索算法,EMT通过在任务间传递有用知识,对多个任务同时实施进化搜索,以提升多个任务的收敛性能。目前,大多数进化算法只考虑了知识迁移而忽略了任务间的联系。提出一种多目标多任务优化算法,结合迁移学习的思想,采用任务间种群的协方差矩阵差异表示任务间种群分布特征差异,使用任务间种群均值的距离表示任务间种群的分布距离,并通过任务间种群的分布特征差异和分布距离表示任务间的相似度。对于某个目标任务,将其最相似任务中的解集实施K最近邻分类,以筛选出对目标任务有价值的解,并使其迁移到目标任务中。实验结果表明,与EMTSD、MaTEA、MO-MFEA-II等多目标多任务优化算法相比,所提算法具有较佳的收敛性能,平均运行效率约提高了66.62%。 相似文献