首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of serotonin 5-HT? receptors (5-HT?R) in the discriminative stimulus effects of fenfluramine was investigated. Male Sprague-Dawley rats were trained to discriminate (±)-fenfluramine (2 mg/kg ip) from saline using a 2-lever, water-reinforced paradigm. Drug-lever responding after fenfluramine was dose-dependent. The 5-HT2C/1BR agonist mCPP and the 5-HT2CR agonist MK 212 fully substituted, whereas the 5-HT2A/2CR agonist DOI partially substituted, for the training drug. The 5-HT2BR agonist BW 723C86 engendered saline-lever responding. The 5-HT2C/2BR antagonist SB 206553 completely antagonized the fenfluramine discrimination as well as the full substitutions of mCPP and MK 212 and the partial substitution of DOI. The selective 5-HT2AR antagonist M100907 partially suppressed the stimulus effects of fenfluramine, mCPP, and MK 212 and almost fully attenuated the partial substitution of DOI. RS 102221, a selective 5-HT2CR antagonist that does not cross the blood-brain barrier, did not alter the fenfluramine cue. Results demonstrate that the discriminative stimulus effects of fenfluramine are centrally mediated by 5-HT2CR and to some extent by 5-HT2AR. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
The administration of the 5-hydroxytryptamine (5-HT) precursor 5-hydroxytryptophan (5-HTP) (25 mg/kg i.p.), in combination with an inhibitor of peripheral 5-HTP decarboxylase, produced a dose-dependent increase in the ejaculation latency of male rats, and this effect was enhanced by additional treatment with the 5-HT1 receptor antagonist (-)-pindolol (2 mg/kg s.c.). The 5-HT2A/C receptor agonist (+/-) 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.125-0.5 mg/kg s.c.) did not by itself affect male ejaculatory behavior, but additional treatment with (-)-pindolol (2 mg/kg s.c.) produced a dose-dependent decrease in number of ejaculating animals. The increased ejaculation latency produced by 5-HTP was fully antagonized by treatment with the 5-HT1B receptor antagonist isamoltane (4 mg/kg s.c.), but not by ritanserin (2 mg/kg s.c.) treatment. The selective 5-HT1A receptor antagonist WAY-100635 (0.15 mg/kg s.c.) enhanced the inhibitory actions of 5-HTP on the male rat ejaculatory behavior, and this dose of WAY-100635 fully antagonized 8-OH-DPAT-induced facilitation (0.25 mg/kg s.c.) of the ejaculatory behavior. WAY-100635 (0.04-0.60 mg/kg s.c.) did not, by itself, significantly affect male rat sexual behavior. Taken together, the results suggest an inhibitory role for postsynaptic 5-HT1B receptors in the effects produced by 5-HTP on male rat ejaculatory behavior. Furthermore, 5-HTP-induced inhibition of male rat ejaculatory behavior is partially controlled by stimulation of inhibitory 5-HT1A autoreceptors, since the effects of 5-HTP were accentuated by treatment with (-)-pindolol, as well as by the more selective 5-HT1A receptor antagonist WAY-100635.  相似文献   

3.
The aim of the present study was to characterize in vivo the 5-HT receptor subtypes which mediate the effect of microiontophoretic applied 5-HT in the guinea pig head of caudate nucleus and orbitofrontal cortex. 5-HT and the preferential 5-HT2A receptor agonist DOI and the preferential 5-HT2C receptor agonist mCPP, suppressed the quisqualate (QUIS)-induced activation of neurons in both structures. The inhibitory effect of DOI and mCPP was not prevented by acute intravenous administration of the 5-HT1/2 receptor antagonist metergoline (2 mg/kg) and the 5-HT2A/2C receptor antagonist ritanserin (2 mg/kg) in the two regions nor by the selective 5-HT2A receptor antagonist MDL100907 (1 mg/kg) in the head of caudate nucleus. However, the inhibitory effect of DOI, but not that of mCPP, was antagonized by a 4-day treatment with metergoline and ritanserin (2 mg/kg/day; using minipumps implanted subcutaneously) in head of caudate nucleus, but not in orbitofrontal cortex. Microiontophoretic ejection of the 5-HT1A/7 receptor agonist 8-OH-DPAT and of the 5-HT1A receptor antagonist WAY100635 both suppressed the spontaneous and QUIS-activated firing activity of orbitofrontal cortex neurons. At current which did not affect the basal discharge activity of the neuron recorded, microiontophoretic application of WAY100635 and BMY7378 failed to prevent the inhibitory effect of 8-OH-DPAT. The inhibitory effect of gepirone, which is a 5-HT1A receptor agonist but devoid of affinity for 5-HT7 receptors, was also not antagonized by WAY100635. Altogether, these results suggest the presence of atypical 5-HT1A receptors in the orbitofrontal cortex. The present results also indicate that the suppressant effect of DOI may be mediated by 5-HT2A receptors in head of caudate nucleus and atypical 5-HT2 receptors in orbitofrontal cortex.  相似文献   

4.
The roles of endogenous serotonin (5-HT) and 5-HT receptor subtypes in regulation of acetylcholine (ACh) release in frontal cortex of conscious rats were examined using a microdialysis technique. Systemic administration (1 and 3 mg/kg, i.p.) of the 5-HT-releasing agent p-chloroamphetamine (PCA) elevated ACh output in a dose-dependent manner. Depletion of endogenous 5-HT by p-chlorophenylalanine significantly attenuated the facilitatory effect of PCA on ACh release. The PCA (3 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 microM) and GR113803 (1 microM), while the 5-HT1A antagonist WAY-100135 (10 mg/kg, i.p.; 100 microM), 5-HT(1A/1B)/beta-adrenoceptor antagonists (-)-pindolol (8 mg/kg, i.p.) and (-)-propranolol (150 microM), 5-HT(2A/2C) antagonist ritanserin (1 mg/kg, i.p.; 10 microM) and 5-HT3 antagonist ondansetron (1 mg/kg, i.p.; 10 microM) failed to significantly modify the effect of PCA. These results suggest that PCA-induced enhancement of 5-HT transmission facilitates ACh release from rat frontal cortex at least in part through 5-HT4 receptors.  相似文献   

5.
Wistar-Kyoto (WKY) rats display high emotivity (e.g. anxiety), compared to Wistar rats. The key role of serotonin (5-HT)1B/1D autoreceptors in 5-HT neurotransmission, and its consequences on emotivity, led us to measure the effects of the nonselective 5-HT1B/1D) receptor agonist m-trifluoromethyl-phenylpiperazine (TFMPP) on central tryptophan hydroxylase activity in male WKY and Wistar rats. In addition to strain-dependent differences in central 5-HT synthesis (WKY > Wistar), acute administration of TFMPP (1.5 and 3 mg/kg) decreased the amplitude of m-hydroxy-benzylhydrazine-elicited accumulation of hippocampal, striatal and cortical 5-hydroxytryptophan (5-HTP) in both strains. In midbrain, however, TFMPP decreased 5-HTP accumulation (but not tryptophan levels) in WKY rats only, whereas the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.2 mg/kg) decreased midbrain 5-HTP levels to a similar extent in both strains. Pretreatment of WKY rats with the selective 5-HT1B/1D receptor antagonist N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1, 2,4-oxadiozol-3-yl)-biphenyl-4-carboxamide (GR 127935, 1.5 and 3 mg/kg) slightly increased midbrain tryptophan hydroxylase activity but did not affect the negative effect of TFMPP on 5-HTP formation. Pretreatment with the 5-HT1A receptor antagonist (+)-N-tert-butyl-3-(4-[2-methoxyphenyl]piperazin-1-yl)-2-phenylpro panamide ((+)-WAY 100135; 3 mg/kg), which decreased the inhibitory effect of 8-OH-DPAT on midbrain 5-HTP levels by 50%, did not alter that of TFMPP. Lastly, neither reserpine (5 mg/kg), ketanserin (1 mg/kg) mianserin (2 mg/kg) nor idazoxan (1 mg/kg) pretreatments affected TFMPP-induced inhibition of midbrain 5-HTP formation, ruling out a role for monoamine release, 5-HT2 receptors and alpha2-adrenoceptors. Our data show that TFMPP, an agonist often used to stimulate 5-HT1B/1D receptors, may inhibit central 5-HT synthesis through nonserotonergic mechanisms.  相似文献   

6.
We examined the modulatory effect of serotonergic activities on haloperidol-induced up-regulation of dopamine D2 receptors in rat striatum. Chronic treatment with haloperidol (0.1, 0.5 mg/kg, i.p., 3 weeks) increased the number of dopamine D2 receptors, while no increase was observed with atypical antipsychotic drugs clozapine (10 mg/kg) and ORG 5222 (0.25 mg/kg). Chronic treatment with MK 212, a serotonin (5-HT)2A/2C receptor agonist (2.5 mg/kg), or with citalopram, a 5-HT reuptake inhibitor (10 mg/kg), potentiated the haloperidol (0.1 mg/kg)-induced up-regulation of dopamine D2 receptor, while that with (+/-)-8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a 5-HT1A receptor agonist (0.1 mg/kg), had no influence on the dopamine D2 receptor up-regulation. Co-administration of ritanserin (1 mg/kg), a 5-HT2A/2C receptor antagonist, with a low dose of haloperidol (0.1 mg/kg), but not with a high dose of the agent (0.5 mg/kg), attenuated the dopamine D2 receptor up-regulation. Drug occupation of 5-HT2A and dopamine D2 receptors in vivo examined with use of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) was 69.8% and 45.1%, respectively, after the acute administration of haloperidol (0.1 mg/kg) plus ritanserin (1 mg/kg). This profile that 5-HT2A receptors were highly occupied compared with dopamine D2 receptors was similar to that of clozapine or ORG 5222. These results suggest that potent 5-HT2A receptor antagonism versus weak dopamine D2 receptor blockade may be involved in the absence of up-regulation of dopamine D2 receptors after chronic treatment with clozapine or ORG 5222.  相似文献   

7.
The effects of mesulergine (100 and 200 microg/kg s.c.), SB 206553 (1 and 2.5 mg/kg i.p.), RP 62203 (2.5 and 4 mg/kg i.p.) and ritanserin (630 microg/kg i.p.) were studied on the extracellular concentration of dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens of chloral hydrate-anesthetized rats, using intracerebral microdialysis. Mesulergine, a non selective serotonin2C/2B/2A (5-HT2C/2B/2A) receptor antagonist, significantly increased DA release, which reached a peak level (+ 20%) 60 min after drug injection and slowly returned back to baseline values. Mesulergine also caused a dose-dependent increase in DOPAC outflow. Pretreatment with mesulergine (200 microg/kg) did not change the inhibition of DA release induced by apomorphine (100 microg/kg), whereas it prevented the reduction of DOPAC outflow induced by apomorphine (100 microg/kg). Administration of SB 206553, a selective blocker of 5-HT2C/2B receptors, dose-dependently increased DA outflow. The dose of 2.5 mg/kg SB 206553 caused a linear increase of DA output which reached a peak (+75%) 40 min after injection, while 1 mg/kg induced a more gradual increase of DA release which peaked (+54%) 60 min after administration of the drug. Treatment with RP 62203, a selective 5-HT2A receptor antagonist, did not produce any significant effect on DA outflow. Administration of ritanserin, a mixed 5-HT2A/2C receptor antagonist, did not cause any significant change of DA and DOPAC outflow. Taken together, these data indicate that selective blockade of 5-HT2/2B receptor subtypes increases DA release in the rat nucleus accumbens.  相似文献   

8.
The 5-HT1A receptor agonist, 8-OH-DPAT ((+/-)-8-dihydroxy-2-(di-n-propylamino) tetralin), (0.63 mg/kg, s.c.) elicited spontaneous tail-flicks (STFs) in rats. This response was potentiated by the selective 5-HT2C receptor agonist, RO 60-0175 ((S)-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine) fumarate) (0.16 mg/kg, s.c.), the action of which was abolished by the novel 5-HT2C antagonist, SB 206,553 (5 methyl-1-(3-pyridil-carbamoyl)-1,2,3,5-tetrahydropyrrolo[2,3 -f]indole) (0.16 mg/kg, s.c.). These data show that 5-HT1A receptor-mediated STFs in rats are facilitated by activation of 5-HT2C receptors supporting the existence of functional interactions between these sites.  相似文献   

9.
The 5-HT2C receptor is one of three closely related receptor subtypes in the 5-HT2 receptor family. 5-HT2A and 5-HT2B selective antagonists have been described. However, no 5-HT2C selective antagonists have yet been disclosed. As part of an effort to further explore the function of 5-HT2C receptors, we have developed a selective 5-HT2C receptor antagonist, RS-102221 (a benzenesulfonamide of 8-[5-(5-amino-2,4-dimethoxyphenyl) 5-oxopentyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione). This compound exhibited nanomolar affinity for human (pKi = 8.4) and rat (pKi = 8.5) 5-HT2C receptors. The compound also demonstrated nearly 100-fold selectivity for the 5-HT2C receptor as compared to the 5-HT2A and 5-HT2B receptors. RS-102221 acted as an antagonist in a cell-based microphysiometry functional assay (pA2 = 8.1) and had no detectable intrinsic efficacy. Consistent with its action as a 5-HT2C receptor antagonist, daily dosing with RS-102221 (2 mg/kg intraperitoneal) increased food-intake and weight-gain in rats. Surprisingly, RS-102221 failed to reverse the hypolocomotion induced by the 5-HT2 receptor agonist 1-(3-chlorophenyl)piperazine (m-CPP). It is concluded that RS-102221 is the first selective, high affinity 5-HT2C receptor antagonist to be described.  相似文献   

10.
We investigated if activation of the muscarinic or nicotinic acetylcholine receptors and serotonin (5-hydroxytryptamine; 5-HT) subtype 2 receptors would have additive or synergistic effects on the suppression of thalamocortically generated rhythmic neocortical high-voltage spindles (HVSs) in aged rats. The 5-HT2 receptor antagonist, ketanserin, at a moderate dose (5 mg/kg) prevented the ability of a muscarinic acetylcholine receptor agonist, (oxotremorine 0.1 mg/kg), and a nicotinic acetylcholine receptor agonist (nicotine 0.1 mg/kg), to decrease HVSs. At a higher dose (20 mg/kg), ketanserin completely blocked the decrease in HVSs produced by moderate doses of muscarinic acetylcholine receptor agonists (pilocarpine 1 mg/kg and oxotremorine 0.1 mg/kg), and by a high dose of nicotine (0.3 mg/kg), though not that produced by high doses of pilocarpine (3 mg/kg) and oxotremorine (0.9 mg/kg). The ability of a 5-HT2 receptor agonist, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.1-1.0 mg/kg), to suppress HVSs was non-significantly modulated by the nicotinic acetylcholine receptor antagonist, mecamylamine (1-15 mg/kg), and the muscarinic acetylcholine receptor antagonist, scopolamine (0.03-0.3 mg/kg). The effects of the drugs on behavioral activity could be separated from their effects on HVSs. The results suggest that activation of the muscarinic or nicotinic acetylcholine receptors plus 5-HT2 receptors has additive effects in the suppression of thalamocortical oscillations in aged rats.  相似文献   

11.
1. The present study examined 5-HT2C receptor agonist-induced behavioural tolerance and 5-HT2C receptor down-regulation in adult rat brain. The effect of chronic subcutaneous infusion of the 5-HT2C receptor agonist, m-chlorophenylpiperazine (m-CPP, 10 mg kg(-1), day(-1)), for 14 days was examined on daily food intake, the ability of acute m-CPP (2.5 mg kg(-1), i.p.) to induce hypolocomotion in a novel arena and elevate plasma corticosterone levels and on ex vivo cortical [3H]-mesulergine binding and hippocampal 5-HT2C receptor protein levels. 2. Before chronic infusion, m-CPP (2.5 mg kg(-1), i.p.) attenuated the number of turns and rears made in a novel open field arena. In contrast, while m-CPP still elicited this hypolocomotion following 14 days, saline infusion, no such hypolocomotion occurred in rats given chronic m-CPP (10 mg kg(-1) day(-1)), indicating that almost complete tachyphylaxis of this behaviour occurred with chronic 5-HT2C receptor agonist injection. 3. During chronic infusion of m-CPP, rats consumed less food per day than saline-treated controls. Acute challenge with m-CPP following two weeks, treatment still attenuated food intake over the next four hours (by 43% and 30%, respectively from that on the previous day) in saline and m-CPP infusion groups, showing that only partial tolerance to 5-HT2C receptor agonist-induced hypophagia occurred. 4. In naive home cage rats, plasma corticosterone was elevated in a dose-dependent manner 35 min after m-CPP injection (0.5, 1 and 3 mg kg(-1), i.p.) but levels were comparable to control values 16 h after m-CPP (2, 5 and 10 mg kg(-1), i.p.). Sixteen hours after a single m-CPP injection (2.5 mg kg(-1), i.p.), plasma corticosterone levels were comparable in a group of rats which had received 14 days infusion of m-CPP or saline. However, following a similar acute m-CPP injection (2.5 mg kg(-1), i.p., - 16 h) in rats previously infused for 14 days with m-CPP, plasma corticosterone levels were lower than those in a separate group which received no chronic infusions (but only acute m-CPP injection), even though the plasma m-CPP levels were comparable in both groups. The data are consistent with the proposal that chronic m-CPP induced some down-regulation of hypothalamic 5-HT2C receptors which contribute, in a tonic manner, to plasma corticosterone secretion under the conditions investigated. 5. Chronic m-CPP infusion reduced the amount of [3H]-mesulergine binding (by 27%, without altering the KD) in membranes prepared from parietal/occipital/temporal cortex (under conditions to exclude binding to 5-HT2A receptors) and 5-HT2C receptor protein-like immunoreactive levels measured by radioimmunoassay in the hippocampus by 38%, confirming that 5-HT2C receptor down-regulation had occurred. 6. Even after 14 days m-CPP infusion only partial behavioural tolerance and 5-HT2C receptor down-regulation were observed, which may vary in different brain regions of the rat. Thus the hypophagia produced by m-CPP may involve activation of 5-HT2C receptors in the hypothalamus, where there is a greater receptor reserve or which are more resistant to agonist-induced down-regulation than 5-HT2C receptors in limbic areas (striatum and nucleus accumbens) mediating m-CPP-induced hypolocomotion.  相似文献   

12.
1. The behavioural effects of the 5-HT1B receptor agonists, RU 24969 and CGS 12066B, have been investigated in C57/B1/6 mice. 2. RU 24969 (1-30 mg kg-1) produced intense and prolonged hyperlocomotion and other behavioural changes. 3. CGS 12066B caused similar effects, but they were much less pronounced, inconsistent and transient irrespective of whether this drug was given i.p. (1-15 mg kg-1) or i.c.v. (0.2-40 micrograms). However, CGS 12066B (7.5 and 15 mg kg-1) caused a dose-related inhibition of RU 24969 (7.5 mg kg-1)-induced hyperlocomotion indicating that the former is a 5-HT1B partial agonist. 4. RU 24969 (7.5 mg kg-1 i.p.)-induced hyperlocomotion was inhibited by the (-)-, but not (+)-isomers of pindolol (4 mg kg-1) and propranolol (20 mg kg-1) but not by metoprolol (10 mg kg-1) or ICI 118,551 (5 mg kg-1), consistent with an involvement of 5-HT1A or 5-HT1B receptors. 5. The response was not altered by the selective 5-HT1A receptor antagonist, WAY 100135 (5 mg kg-1, s.c.), the 5-HT2A/5-HT2C receptor antagonist, ritanserin (0.1 mg kg-1), the selective 5-HT3 receptor antagonist, ondansetron (1 mg kg-1) or the non-selective 5-HT receptor antagonists methysergide (3 mg kg-1) and metergoline (3 mg kg-1). 6. Although spiroxatrine (0.1 mg kg-1) and ketanserin (1 mg kg-1) inhibited RU 24969-induced hyperlocomotion, these effects were probably due to antagonism of dopamine D2 receptors and alpha 1-adrenoceptors respectively. 7. Taken together, these results indicate that RU 24969-induced hyperlocomotion results specifically from activation of central 5-HTIB receptors.8. Lesioning of 5-HT neurones with 5,7-dihydroxytryptamine (75 microg, i.c.v.) or depletion with pchlorophenylalanine(200 mg kg-1, i.p. for 14 days) had no effect on RU 24969-induced hyperlocomotiondemonstrating that the 5-HTIB receptors involved are postsynaptic and that they do not show super sensitivity.9. The involvement of other monoamine neurotransmitter systems in RU 24969-induced hyperlocomotionwas also examined. The response was inhibited by the al-adrenoceptor antagonist, prazosin(1 mg kg-1), the dopamine DI receptor antagonist, SCH 23390 (0.05 mg kg-1) and the dopamine D2 receptor antagonist, BRL 34778 (0.03 mg kg-1), but not by the M2-adrenoceptor antagonist, idazoxan(1 mg kg-1). Lesioning noradrenergic neurones with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine(100 mg kg-1) markedly attenuated this behaviour. These results show that the hyperlocomotion is expressed via noradrenergic and dopaminergic neurones acting on alpha 1-adrenoceptors, DI and D2 receptors.10. RU 24969 decreased brain concentrations of 5-hydroxyindoleacetic acid whilst simultaneously increasing 5-HT, consistent with the reduction of 5-HT neuronal activity by activation of 5-HTlA and 5-HTIB autoreceptors. RU 24969 increased brain 3-methoxy-4-hydroxyphenylglycol, but not noradrenaline, concentrations which supports the involvement of noradrenergic neurones in the expression of hyperlocomotion. RU 24969 did not alter dopamine, dihydroxyphenylacetic acid or homovanillic acid concentrations in the nucleus accumbens suggesting that the dopaminergic neurones terminating there are not directly involved.  相似文献   

13.
The functional regulation by serotonin (5-HT) receptors of the 5-HT-enhanced dopamine (DA) release from the rat substantia nigra (SN) was investigated using in vivo microdialysis. Exogenously administered or extracellularly enhanced 5-HT (by means of intranigral citalopram perfusion) (both 1 microM for 1 h) significantly increased nigral DA efflux to 165% and 145%, respectively. Intranigral administration of pindolol (10 microM, 3 h), a 5-HT1A/1B receptor antagonist which is clinically used in order to block 5-HT1A/1B autoreceptors, did not affect DA levels but significantly increased nigral 5-HT levels to 135%. Co-perfusion of this antagonist with 5-HT (1 microM, 1 h) did not abolish the 5-HT-induced DA release from the SN as DA was increased to 166%. Local application of the 5-HT1A/1B receptor agonist, CP 93129 (1 microM, 1 h), increased DA release from the SN to 4770% whereas 5-HT release was significantly decreased to 75%. Co-perfusion of the 5-HT1A/1B receptor antagonist, pindolol, with this agonist only partly abolished the CP 93129-induced DA release whereas the CP 93129-induced decrease in nigral 5-HT release was completely abolished. Administration of the 5-HT2A/2C receptor antagonist, ketanserin (50 microM, 3 h), significantly increased DA to 143% and 5-HT release to 363%. Co-perfusion of this antagonist with 5-HT still caused an increase in nigral DA release to 214%. Intranigral perfusion of the 5-HT4 receptor antagonist, RS 39604 (10 microM, 3 h), did not affect DA levels but significantly decreased nigral 5-HT levels to 74%. Co-perfusion of this antagonist with 5-HT was able to prevent the 5-HT-enhanced DA efflux from the SN. From this study it can be concluded that the 5-HT-enhanced (and possibly the citalopram-induced) nigral DA release is 5-HT4 receptor mediated.  相似文献   

14.
1. The functional profile of the long form of the human cloned 5-HT7 receptor (designated h5-HT7(a)) was investigated using a number of 5-HT receptor agonists and antagonists and compared with its binding profile. Receptor function was measured using adenylyl cyclase activity in washed membranes from HEK293 cells stably expressing the recombinant h5-HT7(a) receptor. 2. The receptor binding profile, determined by competition with [3H]-5-CT, was consistent with that previously reported for the h5-HT7(a) receptor. The selective 5-HT7 receptor antagonist SB-258719 ((R)-3,N-Dimethyl-N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]ben zene sulfonamide) displayed high affinity (pKi 7.5) for the receptor. 3. In the adenylyl cyclase functional assay, 5-CT and 8-OH-DPAT were both full agonists compared to 5-HT and the rank order of potency for agonists (5-CT > 5-HT > 8-OH-DPAT) was the same in functional and binding studies. 4. Risperidone, methiothepin, mesulergine, clozapine, olanzapine, ketanserin and SB-258719 antagonised surmountably 5-CT-stimulated adenylyl cyclase activity. Schild analysis of the antagonism by SB-258719 gave a pA2 of 7.2+/-0.2 and slope not significantly different from 1, consistent with competitive antagonism. 5. The same antagonists also inhibited basal adenylyl cyclase activity with a rank order of potency in agreement with those for antagonist potency and binding affinity. Both SB-258719 and mesulergine displayed apparent partial inverse agonist profiles compared to the other antagonists tested. These inhibitory effects of antagonists appear to be 5-HT7 receptor-mediated and to reflect inverse agonism. 6. It is concluded that in this expression system, the h5-HT7(a) receptor shows the expected binding and functional profile and displays constitutive activity, revealing inverse agonist activity for a range of antagonists.  相似文献   

15.
5-HT1 receptors are members of the G-protein-coupled receptor superfamily and are negatively linked to adenylyl cyclase activity. The human 5-HT1B and 5-HT1D receptors (previously known as 5-HT1Dbeta and 5-HT1Dalpha, respectively), although encoded by two distinct genes, are structurally very similar. Pharmacologically, these two receptors have been differentiated using nonselective chemical tools such as ketanserin and ritanserin, but the absence of truly selective agents has meant that the precise function of the 5-HT1B and 5-HT1D receptors has not been defined. In this paper we describe how, using computational chemistry models as a guide, the nonselective 5-HT1B/5-HT1D receptor antagonist 4 was structurally modified to produce the selective 5-HT1B receptor inverse agonist 5, 1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2, 4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6, 7-tetrahydrospiro[furo[2,3-f]indole-3,4'-piperidine] (SB-224289). This compound is a potent antagonist of terminal 5-HT autoreceptor function both in vitro and in vivo.  相似文献   

16.
In vivo microdialysis was used to compare the effects of serotonergic drugs on morphine- and cocaine-induced increases in extracellular dopamine (DA) concentrations in the rat nucleus accumbens (NAc). Systemic administration of the 5-HT2A/2C agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (2.5 mg/kg, s.c. ) prevented the increase in extracellular DA in the NAc produced by morphine (5 mg/kg, i.p.). In contrast, this dose of DOI had no effect on the ability of cocaine (10 mg/kg, i.p.) to increase extracellular DA concentrations in the NAc. A 5-HT2C selective agonist, 6-chloro-2-[1-piperazinyl]-pyrazine (MK-212, 5 mg/kg, s.c.) also inhibited morphine-induced increases in extracellular DA concentrations in the NAc. Pretreatment of rats with the selective 5-HT2A antagonist, amperozide, had no effect on morphine-induced elevation of NAc DA concentrations. In order to determine if inhibition of the firing of 5-HT neurons contributes to the serotonin agonist-mediated inhibition of morphine-induced accumbens DA release, rats were pretreated with the 5-HT1A agonist, 8-OHDPAT. At a dose of 100 microg/kg (sc), 8-OHDPAT did not interfere with morphine's ability to increase DA concentrations in the NAc. These results suggest that the activation of 5-HT2C receptors selectively inhibits morphine-induced DA release in the NAc in a manner which is independent of the inhibition of 5-HT neurons.  相似文献   

17.
Chronic treatment with clozapine (14 days; 10 and 25 mg/kg/day) decreases 5-HT1C receptor density but not affinity in rat choroid plexus measured with [3H]mesulergine. We now report the effects of the same clozapine treatment regimens on the function of 5-HT1C receptors (measured by maximal stimulation of 5-HT1C receptor-mediated phosphoinositide hydrolysis) in relation to receptor changes in rat choroid plexus. Quantitative 5-HT1C receptor autoradiography indicated that chronic clozapine treatment decreased, in a dose-related manner, 5-HT1C receptor binding sites labeled by antagonist ([3H]mesulergine) and agonist ([125I](+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, [125I]DOI) radioligands. However, only the higher dose of clozapine decreased statistically significantly the maximal 5-HT1C receptor-mediated phosphoinositide hydrolysis response. Chronic administration of haloperidol (0.5 mg/kg/day) did not change any of the 5-HT1C receptor parameters. In conclusion, chronic clozapine treatment is able to modulate the function of 5-HT1C receptors. This further strengthens the possibility that 5-HT1C receptors may contribute to some of the atypical effects of clozapine.  相似文献   

18.
In order to evaluate the role of glutamate in prolactin secretion, we examined the effects of N-methyl-D,L-aspartic acid (NMDA) receptor antagonists on serum prolactin levels at both resting and restraint-stress conditions in female rats at estrus. NMDA increased basal serum prolactin levels. Administration of the selective NMDA receptor antagonist, cis-4-phosphonomethyl-2-piperidine carboxylic acid (CGS 19755) (5 and 10 mg/kg i.p.), to rats under resting conditions enhanced basal prolactin levels. A low dose of CGS 19755 (3 mg/kg) was unable to modify the hormone serum level. Under stress conditions the pretreatment with CGS 19755 (3 and 5 mg/kg) prevented the increase in serum prolactin levels. This effect was reversed by NMDA (60 mg/kg s.c.). The NMDA receptor antagonist (5 mg/kg) decreased the median eminence concentration of the dopamine metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), without modifying dopamine content. To examine the probable link between serotonin (5-HT) and glutamate in prolactin release, the 5-HT2A/5-HT2C receptor antagonist, ritanserin, was used. Under resting conditions, a dose of 5 mg/kg s.c. blocked the NMDA-induced prolactin release. In rats submitted to restraint, ritanserin decreased the prolactin response and NMDA was unable to correct the stress serum prolactin levels. The 5-HT1A receptor agonist, 8-hidroxypropyl-amino tetralin (8-OH-DPAT) (3 mg/kg s.c.), increased basal serum prolactin levels and restored serum prolactin in stressed animals pretreated with CGS 19755 (5 mg/kg). The present data strongly suggest that the glutamatergic system participates in the regulation of prolactin secretion. A stimulation tone seems to be exerted via the tuberoinfundibular dopaminergic system, and the prolactin release evoked by restraint apparently involves glutamate/NMDA receptors linked to a serotoninergic pathway.  相似文献   

19.
Fluoxetine 10 mg/kg i.p. significantly increased the extracellular concentrations of serotonin (5-HT) in the frontal cortex as assessed by in vivo microdialysis. This effect was significantly potentiated when 0.3 mg/kg s.c. WAY-100635, a 5-HT1A receptor antagonist, was administered 30 min before. WAY-100635 by itself had no effect on extracellular 5-HT. Twenty-four hours after chronic fluoxetine schedule (10 mg/kg/day i.p. x 14 days), basal extracellular 5-HT concentrations in the frontal cortex were higher than those of animals that had received the vehicle chronically. At 24 h after the last dose, a challenge dose of fluoxetine (10 mg/kg i.p.) raised extracellular 5-HT similarly in chronically vehicle or fluoxetine treated rats. At this same interval 25 micrograms/kg s.c. 8-OH-DPAT, a 5-HT1A receptor agonist, significantly reduced extracellular 5-HT only in the frontal cortex of rats treated chronically with the vehicle. Examining basal extracellular 5-HT, the effect of a challenge dose of fluoxetine and the effect of 25 micrograms/kg 8-OH-DPAT after 96 h washout, no differences were found between chronically fluoxetine and vehicle-treated rats. The results confirm that the ability of fluoxetine to stimulate 5-HT1A autoreceptors through an increase of endogenous 5-HT attenuates its effect on cortical dialysate 5-HT. Chronic fluoxetine increased the basal concentrations of extracellular 5-HT only when a substantial amount of its metabolite was present in the brain and during the desensitization of presynaptic 5-HT1A autoreceptors (24 h after the last dose). These effects, in fact, disappeared after 96 h washout. The continuous presence of the drug may, therefore, be necessary to maintain extracellular 5-HT at concentrations high enough to produce a therapeutic effect.  相似文献   

20.
One week after a single administration of 3,4-methylenedioxymethamphetamine (MDMA HCI, 30 mg/kg i.p.), 5-HT1A receptor density was significantly increased by approximately 25-30% in the frontal cortex and hypothalamus of rats. The increased density correlated with the potentiation of the hypothermic response to the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 1 mg/kg s.c.). Hypothalamic 5-HT7 receptors, which also bind 8-OH-DPAT, were not changed, however, by MDMA. Fluoxetine (5 mg/kg s.c.), ketanserin (5 mg/kg s.c.) or haloperidol (2 mg/kg i.p.), given 15 min prior to MDMA, prevented the depletion of 5-hydroxytryptamine (5-HT) induced by MDMA and also blocked the effects of this neurotoxin on 5-HT1A receptor density and on 8-OH-DPAT-induced hypothermia. The protection afforded by drugs against 5-HT loss did not correlate, however, with the antagonism of the acute hyperthermic effect of MDMA. The present results indicate that drugs able to prevent or to attenuate MDMA-induced 5-HT loss also prevent the changes in 5-HT1A receptor density as well as the enhanced hypothermic response to the 5-HT1A receptor agonist 8-OH-DPAT in MDMA-treated rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号