首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to examine the motor effects of (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD), an agonist at metabotropic glutamate receptors, its interaction with dizocilpine (MK-801), a NMDA receptor antagonist, and with D,L-amphetamine, an indirect dopamine receptor agonist. 1S,3R-ACPD (20, 30, 40, 80 micrograms) evoked prominent locomotor and exploratory deficits in an open-field hole-board test and a moderate akinesia and rigidity in a catalepsy test (30, 40, 80 micrograms). MK-801 (0.08, 0.16, 0.32 mg/kg i.p.) as well as D,L-amphetamine (1.0, 2.0, 3.0 mg/kg i.p.) potently reversed 1S,3R-ACPD-induced (80 micrograms) catalepsy. MK-801 and D,L-amphetamine, administered alone, induced motor stimulation. 1S,3R-ACPD (80 micrograms) reversed the effects of the two lower doses of MK-801. 1S,3R-ACPD reversed D,L-amphetamine-induced motor stimulation to a minor extent than that of MK-801. Thus motor deficits induced by 1S,3R-ACPD were reversed by both, NMDA receptor blockade and dopamine receptor activation. 1S,3R-ACPD reversed motor stimulation, induced by NMDA receptor blockade and, however less pronounced, that by dopamine receptor activation.  相似文献   

2.
3.
The relationship between the effects of the N-methyl-D-aspartate (NMDA) antagonist MK-801 on acute responses to ethanol and its ability to block ethanol sensitization and tolerance was examined in DBA/2J mice. Cross-sensitization between these drugs was also studied. Repeated administration of 0.1 mg/kg MK-801 with ethanol potentiated, whereas 0.25 mg/kg attenuated, sensitization to ethanol's locomotor stimulant effects; rearing was similarly affected. There was evidence for cross-sensitization between ethanol and 0.25 mg/kg MK-801. MK-801 potentiated ethanol's ataxic effects in the grid test, but had no effect on tolerance to this effect. MK-801's effects on ethanol sensitization appeared to be related to its own behavioral effects, rather than NMDA receptor blockade per se. Further, these studies demonstrate dissociation between ethanol sensitization and tolerance. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
NMDA receptor activation has been implicated in modulating seizure activity; however, its complete role in the development of epilepsy is unknown. The pilocarpine model of limbic epilepsy involves inducing status epilepticus (SE) with the subsequent development of spontaneous recurrent seizures (SRSs) and is widely accepted as a model of limbic epilepsy in humans. The pilocarpine model of epilepsy provides a tool for looking at the molecular signals triggered by SE that are responsible for the development of epilepsy. In this study, we wanted to examine the role of NMDA receptor activation on the development of epilepsy using the pilocarpine model. Pretreatment with the NMDA receptor antagonist MK-801 does not block the onset of SE in the pilocarpine model. Thus, we could compare animals that experience similar lengths of SE in the presence or absence of NMDA receptor activation. Animals treated with MK-801 (4 mg/kg) 20 min prior to pilocarpine (350 mg/kg) (MK-Pilo) were compared to the pilocarpine treated epileptic animals 3-8 weeks after the initial episode of SE. The pilocarpine-treated animals displayed both ictal activity and interictal spikes on EEG analysis, whereas MK-801-pilocarpine and control animals only exhibited normal background EEG patterns. In addition, MK-801-pilocarpine animals did not exhibit any SRSs, while pilocarpine-treated animals exhibited 4.8 +/- 1 seizures per 40 h. MK-801-pilocarpine animals did not demonstrate any decrease in pyramidal cell number in the CA1 subfield of the hippocampus, while pilocarpine animals averaged 15% decrease in cell number. In summary, the MK-801-pilocarpine animals exhibited a number of characteristics similar to control animals and were statistically significantly different from pilocarpine-treated animals. Thus, NMDA receptor inhibition by MK-801 prevented the development of epilepsy and interictal activity following SE. These results indicate that NMDA receptor activation is required for epileptogenesis following SE in this model of limbic epilepsy.  相似文献   

5.
Glutamate (Glu), the major excitatory neurotransmitter in the nervous system, is toxic to neurons when it accumulates at high concentrations in the extracellular space. Even though Glu is a mixed agonist, capable of activating N-methyl-D-aspartate (NMDA) receptors and non-NMDA receptors, in many preparations Glu neurotoxicity is prevented by selective blockade of NMDA receptors. In cultures of hippocampal neurons, treatment with 500 microM Glu for 30 min killed more than 90% of the neurons. The simultaneous addition of the selective NMDA agonist methyl-10,11-dihydro-5-H-dibenzocyclo-hepten-5,10-imine (MK-801) reduced the cell loss to less than 30%. However, when Glu was combined with either diazoxide or cyclothiazide, two thiazides which dramatically diminish rapid Glu desensitization, MK-801 was no longer very protective and neuronal loss exceeded 80%. However, the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), in combination with MK-801, was able to prevent most Glu neurotoxicity in the presence of these thiazides. These experiments show that there are circumstances under which Glu neurotoxicity is produced by overactivation of non-NMDA receptors. Our observations offer a possible explanation for the recent finding that blockade of non-NMDA receptors is much more beneficial than NMDA receptor blockade in protecting the brain in some in vivo models of global ischemia.  相似文献   

6.
The ion channel of the N-methyl-D-aspartate (NMDA) receptor complex is subject to a voltage-dependent regulation by Mg2+ cations. Under physiological conditions, this channel is supposed to be blocked by a high concentration of magnesium in extracellular fluids. A single dose of magnesium organic salts (i.e., aspartate, pyroglutamate, and lactate) given orally to normal mice rapidly increases the plasma Mg2+ level and reveals a significant dose-dependent antagonist effect of magnesium on the latency of NMDA-induced convulsions; this effect is similar to that seen after administration of the dizocilpine (MK-801) channel blocker. An anticonvulsant effect of Mg2+ treatment is also observed with strychnine-induced convulsions but not with bicuculline-, picrotoxin-, or pentylenetetrazol-induced convulsions. In the forced swimming test, Mg2+ salts reduce the immobility time in a way similar to imipramine and thus resemble the antidepressant-like activity of MK-801. This activity is masked at high doses of magnesium by a myorelaxant effect that is comparable to MK-801-induced ataxia. Potentiation of yohimbine fatal toxicity is another test commonly used to evaluate putative antidepressant drugs. Administration of Mg2+ salts, like administration of imipramine strongly potentiates yohimbine lethality in contrast to MK-801, which is only poorly active in this test. Neither Mg2+ nor MK-801 treatment can prevent reserpine-induced hypothermia. These data demonstrate that oral administration of magnesium to normal animals can antagonize NMDA-mediated responses and lead to antidepressant-like effects that are comparable to those of MK-801. This important regulatory role of Mg2+ in the central nervous system needs further investigation to evaluate the potential therapeutic advantages of magnesium supplementation in psychiatric disorders.  相似文献   

7.
This study was designed to investigate the influence of the calcium (Ca2+) channel inhibitors nicardipine, nifedipine, and flunarizine on the protective action of MK-801, LY 235959 [N-methyl-D-aspartate (NMDA) receptor antagonists], and GYKI 52466 (a non-NMDA receptor antagonist) against electroconvulsions in mice. Unlike nicardipine (15 mg/kg) or flunarizine (10 mg/kg) nifedipine (7.5 and 15 mg/kg) potentiated the protective potency of MK-801 (0.05 mg/kg), as reflected by significant elevation of the convulsive threshold (a CS50 value of the current strength in mA producing tonic hind limb extension in 50% of the animals). The protective activity of LY 235959 and GYKI 52466 was reflected by their ED50 values in mg/kg, at which the drugs were expected to protect 50% of mice against maximal electroshock-induced tonic extension of the hind limbs. Nicardipine (3.75 15 mg/kg), nifedipine (0.94-15 mg/kg), and flunarizine (2.5-10 mg/kg) in a dose-dependent manner markedly potentiated the antiseizure efficacy of LY 235959. Flunarizine (5 and 10 mg/kg) was the only Ca2+ channel inhibitor to enhance the protective action of GYKI 52466 against electroconvulsions. Except with MK-801 + flunarizine (motor performance) or GYKI 52466 + flunarizine (long-term memory), combination of NMDA or non-NMDA receptor antagonists with Ca2+ channel inhibitors produced an impairment of motor performance (evaluated in the chimney test) and long-term memory acquisition (measured in the passive avoidance task) as compared with vehicle treatment.  相似文献   

8.
The blockade of learning of Pavlovian fear conditioning by the N-methyl-D-aspartic acid (NMDA)-receptor antagonist MK-801 was examined in 166 goldfish. In previously untrained fish, MK-801 blocked learning of a light-off or a tone conditioned stimulus (CS) paired with an electrical shock unconditioned stimulus (UCS). Pretraining on the light-off CS did not affect the rate of learning of the tone CS but protected the tone learning from disruption by MK-801. Switching from the light-off to the tone CS changed the identity of the CS but not its temporal contiguity with the UCS. Pretraining consisting of pseudoconditioning of the light-off CS did not protect subsequent tone learning from blockade by MK-801. Thus, the NMDA receptor functions are necessary for learning related to the temporal contiguity of the CS and UCS but not to the identity of the CS as a cue to the occurrence of the fearful effects of the UCS. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
NMDA channel blockers are potentially advantageous therapeutic agents for the treatment of ischemia and head trauma, which greatly elevate extracellular glutamate, because they should most effectively inhibit high levels of receptor activation. A novel high affinity TCP site ligand, WIN 63480, does not produce MK-801- or PCP-like behavioral activation at anti-ischemic doses. While WIN 63480, MK-801 and PCP were all observed to be effective blockers of open NMDA channels, WIN 63480 had much less access to closed NMDA channels. This difference may be due to the fact that WIN 63480 is hydrophilic (logD = -4.1) while MK-801 and PCP are lipophilic (logD = +1.8). In vivo, closed channel access may result in a non-competitive profile of antagonism for MK-801 and PCP compared to a more uncompetitive profile for WIN 63480. Release of glutamate, and depolarization, are likely to produce a high level of NMDA receptor activation in ischemic areas compared to normal tissue. Consequently, at anti-ischemic doses, WIN 63480 may produce less inhibition of physiological NMDA-mediated processes in neural systems involved in behavioral regulation than MK-801 or PCP, leading to an improved side effect profile.  相似文献   

10.
The neuroprotective properties of the N-methyl-D-aspartate (NMDA) antagonist dizocilpine (MK-801) and the non-NMDA antagonists 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f]quinoxaline (NBQX) and alpha-methyl-4-carboxyphenylglycine (MCPG) were evaluated against neuronal injury produced by the intraspinal injection of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). Forty-nine animals were divided into eight groups in order to evaluate the effects of different drug combinations: (a) NMDA; (b) NMDA + MCPG; (c) NMDA + NBQX; (d) NMDA + MK-801; (e) AMPA; (f) AMPA + MCPG; (g) AMPA + MK-801; and (h) AMPA + NBQX. Drugs were microinjected into spinal segments T12-L3 through a micropipette attached to a Hamilton microliter syringe. Spinal cords were evaluated after a survival period of 48 h at which time NMDA and AMPA were found to produce morphological changes over the concentration ranges of 125-500 mM and 75-500 microM, respectively. Neuronal loss following injections of NMDA + MK-801 or AMPA + NBQX was significantly less than that following injections of NMDA or AMPA alone. By contrast, neuronal loss following co-injections of NMDA or AMPA with inappropriate antagonists, i.e., NMDA + NBQX/MCPG or AMPA + MCPG/MK-801, was not significantly different from that produced by NMDA or AMPA. The results suggest that elevations in spinal levels of glutamate followed by prolonged activation of NMDA and AMPA receptor subtypes initiate an excitotoxic cascade resulting in neuronal injury. Blockade of NMDA and AMPA effects by MK-801 and NBQX respectively confirms the well documented neuroprotective effects of these drugs and lends support to the potential importance of NMDA and especially AMPA receptor antagonists as therapeutic agents in the treatment of acute spinal cord injury.  相似文献   

11.
Antagonists of NMDA glutamate receptors have been shown to alleviate neuropathic pain in rats and humans. However, NMDA antagonists can cause significant side effects ranging from behavioral disturbances to injury of neurons in the posterior cingulate/retrosplenial (PC/RS) cortex. We have found that alpha-2 adrenergic agonists prevent the PC/RS neurotoxic side effects of NMDA antagonists. In the present study of adult female rats subjected to sciatic nerve ligation (Bennett neuropathic pain model) and tested for paw withdrawal latency (PWL) following a thermal stimulus, we evaluated the ability of the NMDA antagonist, MK-801, to alleviate neuropathic pain either by itself or when administered together with the alpha-2 adrenergic agonist, clonidine. We found that MK-801, at a dose (0.05 mg/kg s.c.) that is known to cause mild hyperactivity but is subthreshold for producing PC/RS neurotoxic changes, relieved the neuropathic pain state associated with sciatic nerve ligation. However, the relief at this dose was very transient, and no neuropathic pain-relieving effect was observed at a lower dose (0. 025 mg/kg s.c.) of MK-801. Clonidine, at a dose (0.05 mg/kg s.c.) that prevents the cerebrocortical neurotoxic effects of MK-801, decreased sensitivity to the thermal stimulus equally under all conditions (ligated, sham ligated, unoperated), but did not specifically relieve neuropathic pain in the ligated limb. Combining this dose of clonidine with an ineffective dose (0.025 mg/kg s.c.) of MK-801 provided specific, complete and long lasting (up to 4 h) relief from neuropathic pain. Rats receiving this drug combination did not display hyperactivity or any other behavioral disturbance typically associated with MK-801 treatment, nor show neurotoxic changes in cerebrocortical neurons. In separate experiments on normal unoperated rats, we found that clonidine (0.05 mg/kg s.c.) counteracted the hyperactivity induced by MK-801 (0.05 mg/kg s.c.) and returned activity levels to a normal range. These findings signify that clonidine, which does not specifically relieve neuropathic pain, can potentiate the neuropathic pain-relieving action of MK-801, while also protecting against neurotoxicity and hyperactivity side effects of MK-801. The potentiation is of a sufficient magnitude that it permits cutting the MK-801 dose requirement in half, thereby achieving prolonged neuropathic pain relief while doubling the margin of safety against any type of side effect that might be mediated by blockade of NMDA receptors.  相似文献   

12.
Nitric oxide (NO) has been implicated in the establishment of precise synaptic connectivity throughout the neuroaxis in several species. To determine the contribution of NO to NMDA receptor-dependent dendritic growth in motor neurons, we administered the NMDA antagonist MK-801 to wild-type mice and neuronal nitric oxide synthase (nNOS) knock-out mice between postnatal days 7 and 14. Compared to saline-treated wild-type animals the number of dendritic bifurcations was significantly reduced in nNOS knock-out animals and MK-801-treated wild-type animals. There was no significant difference in dendritic bifurcation between MK-801-treated wild-type, MK-801-treated nNOS knock-out, and saline-treated nNOS knock-out animals, suggesting that nNOS knock-out and NMDA receptor block had similar effects. The path of the longest dendrite and the number of primary dendrites was the same in all treatment groups, indicating an effect specific to bifurcation. Sholl analysis revealed that differences in bifurcation numbers occurred between 160 and 320 micrometers from the cell body, the distance at which second, third, and fourth order dendrites are most prevalent. Dendrite order analyses confirmed a significant reduction in numbers, but not lengths, of third and fourth order dendrites in nNOS knock-out and drug-treatment groups. Finally, immunohistochemical examination of the developing spinal cord indicated that NMDA receptors and nNOS are colocalized within interneurons surrounding the motor neuron pool. These results support the view that at least part of NMDA receptor-dependent arborization of motor neuron dendrites is mediated by the local production of NO within the developing spinal cord.  相似文献   

13.
AIM: To investigate age related alterations in glutamate N-methyl-D-aspartate (NMDA) receptor binding produced by the modulatory compounds glutamate, glycine, and magnesium (Mg2+) sulphate. METHODS: The effects produced by glutamate plus glycine, and Mg2+ on the binding of [3H]MK-801, a ligand for the N-methyl-D-aspartate ion channel phencyclidine site, were measured in membrane preparations made from prefrontal cortex from human neonate (n = 5), infant (n = 6), and adult (n = 6) necropsy brains. RESULTS: Neonatal brains had the least [3H]MK-801 binding, suggesting either a low density of NMDA receptors or a more restricted access of [3H]MK-801 to cation channel sites. Infant brains had the most [3H]MK-801 binding which was stimulated to a greater extent by L-glutamate (100 microM) and glycine (10 microM) than in neonatal and adult brains. MG2+ invariably inhibited [3H]MK-801 binding. However, the Mg2+ IC50 value was higher in neonatal brain (3.6 mM) than infant (1.4 mM) and adult (0.87 mM) brains. CONCLUSION: Infant brain may have excess NMDA receptors which are hyper responsive to glutamate and glycine. The lower potency of Mg2+ to inhibit [3H]MK-801 binding in neonatal cortex may be because newborn babies have NMDA receptors without the normal complement of Mg2+ sites. The findings suggest that therapeutic NMDA receptor block in neonates requires higher concentrations of magnesium sulphate in brain tissue.  相似文献   

14.
The hexachlorophene-induced cytotoxic brain oedema is an experimental model of brain damage, suitable for testing cerebroprotective substances (Andreas 1993). In order to examine whether glutamate receptors are involved in mediating functional disorders due to neurotoxic brain damage, we have studied the protective effects of several competitive and non-competitive antagonists using adult male Wistar rats in a simple "ladder-test" for assessing coordinative motor behaviour. Hexachlorophene-induced brain damage was verified by histological examination of the cerebellum with vacuolation of white matter, astrocyte hypertrophy and astrocyte proliferation taken as signs of neurotoxic injury. The non-competitive N-methyl-D-aspartate (NMDA) antagonist dizocilpine maleate (MK-801) decreased the motor disturbance on the first and second day of the "ladder-test" when applied in the doses 0.1 mg/kg and 0.2 mg/kg intraperitoneally for 3 weeks during the hexachlorophene treatment. Acute MK-801 administration (0.1 mg/kg intraperitoneally) after 3 weeks hexachlorophene exposure improved the coordinative motor response only on the first day. When testing the competitive NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) in the dose 1.0 mg/kg intraperitoneally the motor disturbance was lowered significantly earlier than in spontaneous remission. Similar effects were observed with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the dose of 0.8 mg/kg intraperitoneally, an antagonist interacting both with the strychnine-insensitive binding site for glycine within the NMDA receptor complex and with the kainate(+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor complex. Concurrent MK-801 administration decreased the vacuolation of white matter. The results suggest that NMDA receptors and non-NMDA receptors are involved in development of functional disorders induced by hexachlorophene.  相似文献   

15.
16.
Amino acid concentration in the anterior preoptic area and medial basal hypothalamus was determined by HPLC in female rats: (1) at 16 (prepubertal) vs. 30 (peripubertal) days of age and (2) after N-methyl-D-aspartate (NMDA) or dizocilpine (MK-801) administration in both groups. 30-day-old rats had higher levels of aspartate (Asp; 24%), glutamate (Glu; 49%) and glycine (Gly; 44%) and lower levels of taurine (Tau; 43%) than 16-day-old rats. In 16-day-old rats, NMDA (30 mg/kg, s.c., 10 min) increased the Glut concentration (48%). This effect was prevented by MK-801 pretreatment (1 mg/kg, s.c., 1 h), which did not modify amino acid concentrations per se. In 30-day-old rats, NMDA treatment increased Glut (24%) and asp (42%) levels. MK-801 pretreatment abolished NMDA-induced changes and reduced Tau (26%) and Gly (30%) levels. MK-801 administration alone reduced the concentration of Glut (39%), Asp (54%), Tau (33%) and Gly (31%). It is concluded that both (1) the concentration of Asp, Glu, Gly and Tau and (2) the changes induced by NMDA receptor activation or blockade are different at 16 vs. 30 days of age. The existence of a tonic (positive) control on amino acid levels linked to the NMDA receptor which would be immature or absent at 16 days of age is suggested.  相似文献   

17.
Spinal cord injury can lead to an exaggeration of transmission through spinal pathways, resulting in muscle spasticity, chronic pain, and abnormal control of blood pressure and bladder function. These conditions are mediated, in part, by N-methyl-D-aspartate (NMDA) receptors on spinal neurons, but the effects of cord injury on the expression or function of these receptors is unknown. Therefore, antibodies to the NMDA-R1 receptor subunit and binding of [3H]MK-801 were used to assess NMDA receptors in the spinal cord. Receptor density in rats with intact spinal cords was compared to that in rats 1 and 2 weeks after spinal cord transection (SCT) at the mid-thoracic level. At 1 and 2 weeks after SCT, [3H]MK-801 binding was reduced in most laminae in cord segments caudal to the injury, whereas no decrease in amount of R1 subunit immunoreactivity was observed. No significant changes in [3H]MK-801 binding and NMDA-R1 immunoreactivity could be seen rostral to the transection. Since [3H]MK-801 binding requires an open ion channel, the discrepancy between [3H]MK-801 binding and immunocytochemistry may indicate a loss of functional receptors without a consistent change in their total number. Therefore, the exaggerated reflexes that are well established in rats 2 weeks after cord injury must be mediated by a mechanism that withstands attenuation of NMDA receptor function.  相似文献   

18.
BACKGROUND AND PURPOSE: Glutamate receptor activation can stimulate nitric oxide (NO) production and possibly play a role in long-term potentiation and excitotoxic-mediated injury. We studied the differential effect of agonist-induced activation of ion channel-linked N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subtypes on NO production in vivo in rat hippocampus. We also studied whether dantrolene, a ryanodine calcium channel inhibitor previously shown to attenuate metabotropic glutamate receptor stimulation of NO production, also attenuated ionotropic glutamate receptor-mediated stimulation of NO production. METHODS: Microdialysis probes were placed bilaterally into the CA3 region of the hippocampus of pentobarbital-anesthetized adult Sprague-Dawley rats and were perfused for 5 hours with artificial cerebrospinal fluid (CSF) containing 3 mumol/L [14C]L-arginine. Recovery of [14C]L-citrulline in the effluent was used as a marker of NO production. In 13 groups of rats, increases in [14C]L-citrulline recovery were compared between right- and left-sided probes perfused with no additional drugs versus combinations of NMDA, AMPA, the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME), the non-competitive glutamate receptor blocker MK-801, the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and dantrolene. RESULTS: Recovery of [14C]L-citrulline during perfusion with artificial CSF progressively increased to 272 +/- 73 fmol/min (+/-SEM) over 5 hours. Contralateral perfusion with 1 mmol/L L-NAME inhibited [14C]L-citrulline recovery. Perfusion with 1 mmol/L MK-801 or 1 mmol/L CNQX reduced [14C]L-citrulline recovery compared with contralateral perfusion with CSF alone. Perfusion with 1 mmol/L NMDA enhanced [14C]L-citrulline recovery, and this enhancement was attenuated by L-NAME, MK-801, and CNQX but not by dantrolene. Perfusion with 1 mmol/L AMPA enhanced [14C]L-citrulline recovery, and this enhancement was also attenuated by L-NAME, MK-801, and CNQX but not by dantrolene. CONCLUSIONS: Through an indirect method of assessing NO production in vivo, results with MK-801 and CNQX indicate that NMDA and AMPA receptor activation contribute to basal NO production in the rat hippocampus. Enhanced NO production with NMDA and AMPA agonists appears to involve a complex neuronal interaction because the effect of NMDA was attenuated by both MK-801 and CNQX and because the effect of AMPA was attenuated by both CNQX and MK-801. In contrast to metabotropic glutamate receptor activation, release of calcium from intracellular ryanodine calcium channels does not appear to be a prominent mediator of ionotropic glutamate receptor stimulation of NO production.  相似文献   

19.
The selective non-competitive N-methyl-D-aspartate (NMDA) antagonist (+)-5-methyl-10, 11-dihydro-5H-dibenzo(a, d)cyclohepten-5,10-imine maleate ((+)MK-801) led to a dose-dependent increase in locomotor activity in mice pretreated with a combination of reserpine and alpha-methyl-para-tyrosine (alpha-MT). A selective and potent sigma receptor "antagonist" NE-100 (N, N-dipropyl-2- [4-methoxy-3-(2-phenylethoxy)-phenyl]-ethylamine monohydrochloride), which did not per se affect spontaneous locomotor activity, did not prevent the locomotor stimulatory effects of (+)MK-801. Sulpiride, a dopamine D2 receptor antagonist, and clozapine, a dopamine D4 receptor antagonist, which decreased spontaneous locomotor activity, did not prevent the locomotor stimulatory effects of (+)MK-801. The sigma receptor "agonists" (+)N-allynormetazocine [(+)SKF10,047], (+)pentazocine and (+)-3-(3-hydroxyphenyl)-N-(1-propyl) piperidine [(+)3-PPP], which did not per se affect spontaneous locomotor activity, did dose-dependently enhance the hyperlocomotion induced by (+)MK-801. The enhancement of (+)MK-801-induced the hyperlocomotion by (+)SKF10,047, (+)pentazocine and (+)3-PPP was completely blocked by NE-100. The enhancement of (+)MK-801-induced hyperlocomotion by (+)pentazocine was not affected by treatment with sulpiride and clozapine. As sigma ligands can markedly attenuate NMDA antagonist-induced behavior, the major physiological role of sigma receptors in vivo might be to modulate functions of the NMDA receptor ion channel complex.  相似文献   

20.
To investigate the role N-methyl-D-aspartate (NMDA) receptors play in behavioral plasticity, adult male rats of the Naples high-(NHE) and low-excitability (NLE) lines, and of a random-bred Sprague-Dawley strain (NRB) received, the noncompetitive (MK-801:0.01 or 2.5 mg/kg) or the competitive (CPP: 0.01 or 5 mg/kg) NMDA receptor antagonists, or vehicle IP soon after a 10-min test in a Làt-maze. Retention was tested 1 week later. Habituation of activity and defecation score was monitored by the between-test decrement (LTH) in the frequency of corner-crossings (HA) and rearings (VA), with prevailing cognitive and noncognitive meaning, respectively, and of fecal boli. (i) In the NLE-rats, low and high doses of MK-801 facilitate LTH of HA, and a high dose of CPP facilitates LTH of HA. (ii) In the NRB-rats, MK-801 facilitates LTH of HA at a low dose and inhibits LTH of VA at a high dose, whereas CPP inhibits LTH of HA at a high dose only. In contrast, (iii) in the NHE-rats, high doses of MK-801 impair LTH of HA, and low doses of CPP facilitate LTH of HA. In conclusion, the dose- and genotype-dependent differential effects of allosteric and isosteric receptor blockade support the hypothesized modulatory role of NMDA receptors in behavioral plasticity; and the dissociation between retention of cognitive and noncognitive behavioral components suggests that NMDA receptors are involved in their parallel processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号