首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iranian Polymer Journal - A state of art on characterization of Kevlar fibers and Kevlar fiber reinforced polymer (KFRP) composites is presented to enunciate the limits of further researches in...  相似文献   

2.
This article is a detailed review of the strain rate dependence of fracture toughness properties in polymer composite materials. An attempt is made to draw together all the strain rate studies done in the past and to elucidate the reasons given by the authors of the reviewed papers for the trends resulting from their studies to better understand the strain rate effects on the fracture toughness of fiber reinforced polymer composite materials. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 899–904, 2005  相似文献   

3.
Epoxy nanocomposites modified with multiwalled carbon nanotubes (MWNTs), rubber nanoparticles (RNPs), and the combinations of MWNTs and RNPs were prepared. The effects of multiphase reinforcements on mechanical and fracture properties of epoxy resin were investigated. With combined use of RNPs and MWNTs, the ternary nanocomposites exhibit simultaneous enhancement in stiffness, strength and fracture toughness. Maximum increase of 101% in KIC and 294% in GIC of the ternary composites were achieved in this study. A modified model was developed to predict the modulus of the ternary composites based on the Halpin‐Tsai equation, which was proved to match the experimental results exactly. DSC, TEM, SEM, and AFM studies were carried out to evaluate the composition and microstructure of the binary and ternary composites. POLYM. COMPOS., 36:2147–2156, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
Weak fiber/matrix interface dominates the toughening properties of ceramic matrix composites. This paper reports a novel sol-gel fabricated carbon fiber reinforced mullite matrix composite, in which the fiber/matrix interface was inherently weak in shear properties (∼25 MPa), measured in-situ by fiber push-in tests. The interface microstructure was chemically sharp, characterized by transmission electron microscopy. The outcome of the weak interface was the full trigger of the toughening mechanisms like crack deflection, etc., leading to significant enhancement of the fracture toughness of the composite (∼12 MPa√m), measured by single edged notch beam method. Finally, due to the weak fiber/matrix interface and large thermal expansion mismatch of the fiber and matrix, the high temperature fracture strength was enhanced in the temperature range from 25 to 1200 °C, which is attributed to the enhancement of the interfacial property at elevated temperatures that favors better load transfers between composite constituents.  相似文献   

5.
The objective of this study is to understand and characterize crack deflection and sub-crack growth in fabric laminate composites. The theory of crack digression based on the Cook-Gordon mechanism of crack blunting and the criterion developed by Kendall were used to study the crack propagation phenomenon. A simple approach has been developed to evaluate the cohesive and adhesive fracture energies, which play a vital role in the study of strength and toughness of the fabric laminate composites. The effects of strain rate and quasi-static crack velocity on these energy values were identified. This study explored the possibility of selftoughening in an otherwise brittle composite system. Two competing mechanisms have been identified that control crack propagation in fabric laminate composites.  相似文献   

6.
Fracture toughness of chopped strand glass fiber reinforced particle-filled polymer composite beams was investigated in Mode I and Mode III loading conditions using three-point bend tests. Effects of crack angles on fracture behavior were also studied. The specimens, which have inclined crack at an angle θ to the axis of the specimens, were used to carry out the tests. The specimens were tested with inclination angles 30°, 45°, 60° and 75°. The results are compared with the values of KIC obtained using conventional (θ=90° ) specimens. In addition, J integrals were also determined. JIC increases continuously with increasing in crack angle from θ=30° to θ=90°. In contrast, JIIIC decreases with the crack inclination angle θ from 30° to 90°.  相似文献   

7.
Glass fiber reinforced plastic (GFRP) composites were made using CTPEGA [carboxyl terminated poly(ethylene glycol) adipate] modified epoxy as a matrix and characterized for their flexural properties, impact strength and interlaminar shear stress (ILSS). The volume fraction of glass was about 0.45 for all the composites. The concentration of CTPEGA in the matrix was varied gradually from 0 to 40 phr (parts per hundred parts of resin), to investigate the effect of CTPEGA concentration on the mechanical properties of the composites. It was found that the flexural strength and ILSS gradually decreases with increase in CTPEGA concentration. However, the impact strength of the composites increases up to 20 phr of CTPEGA concentration and decreases thereafter. Scanning electron microscope (SEM) analysis of the fracture surface indicates massive plastic deformation in modified epoxy based composites. Polym. Compos. 25:165–171, 2004. © 2004 Society of Plastics Engineers.  相似文献   

8.
《Polymer Composites》2017,38(10):2201-2211
The present analysis intends to look into the needlepunched nonwoven textile material reinforced polymer composites. The solid particle erosion wear behavior of needlepunched nonwoven fabric mat reinforced epoxy composites were assessed using silica sand particles with the size of 250, 350, and 450 μm. Taguchi analysis was also carried out on the basis of design of experiments (DoE) approach to establish the interdependence of operating parameters. Mechanical and physical properties of composites were also evaluated experimentally, and the storage modulus (E′), loss modulus (E″) and damping factor (tan δ) characteristics were analyzed with the help of dynamic mechanical analyzer (DMA) in the temperature range of 20–200°C. Surface morphology of the eroded surfaces of composites were also analyze by scanning electron microscopic (SEM) to discuss the feasible erosion mechanism on composite surfaces. The result reveals that fiber content and impact velocity has an invulnerable impact on the erosion rate of needlepunched nonwoven fabric mat‐epoxy composites. The mechanical and physical properties are meliorating with incorporation of fabric mat weight percentage in composites, and the measured damping factor (tan δ) peaks of T g for needlepunched nonwoven fabric mat epoxy composites ranged from 100 to 110°C. POLYM. COMPOS., 38:2201–2211, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
Carbon fiber was sized by a thermoplastic polymer solution mixed with a compatible amine monomer. The effect of sizing agent on tensile strength was studied by single fiber strength testing. Interfacial properties of re‐sized carbon fiber/epoxy composite were investigated, with special emphasis on the improvement in both interfacial shear strength and interfacial fracture toughness. The interfacial fracture toughness of composites was characterized by calculating the effective interphase fracture energy rate through the information obtained from the force–displacement curve in the micro‐bond test. Fracture topography of micro‐bond specimen was observed to discuss the interfacial fracture mechanism. POLYM. COMPOS., 35:482–488, 2014. © 2013 Society of Plastics Engineers  相似文献   

10.
Two kinds of carbon felt reinforced carbon composites, C/C-A and C/C-B, containing respectively pitch carbon fibers and PAN carbon fibers, have been developed to enhance the fracture mechanics properties. The fracture toughness values of these new composites were measured as a function of temperature up to 2400°C. These results are compared with those of a carbon fiber cloth reinforced carbon composite containing rayon fibers (C/C-C) and a fine grain isostatic graphite (IG-11). Major differences among these materials and their distinctive features are discussed.  相似文献   

11.
The effect of photostabilizers on the mechanical, thermal, and physical properties of textile fiber reinforced polymer (T‐FRP) composites was investigated. In the first phase of this study, the effect of different concentrations of ultra violet absorber (UVA), hindered amine light stabilizers (HALS) and antioxidants (AOs) into T‐FRP composites for unweathering condition are examined. Mechanical tests were performed as well as differential scanning calorimetry (DSC) analysis for thermal properties. According to test results, there is no significant effect of photostabilizers on the mechanical and thermal properties of the T‐FRP composites. In the second phase of the study, the influence of the photostabilizers on the durability performance of T‐FRP composites is focused under the accelerated UV weathering condition by the help of tensile testing, thermal analysis, and color measurements. According to test results, only about 5% loss in mechanical properties (25% loss for composites without additives) can be observed after 240 h of UV weathering with HALS and UVA addition at adequate concentrations. In addition, AOs can be considered as a strong stabilizer on physical properties with lower color change values. This work shows that the efficiency of the photostabilizers is highly dependent on the type, concentration, and weathering time. POLYM. ENG. SCI., 58:1082–1090, 2018. © 2017 Society of Plastics Engineers  相似文献   

12.
Carbon nanofillers with different surface functional groups and aspect ratios, including carboxyl carbon nanotubes, un-functionalized carbon nanofibers (CNFs), glycidyloxypropyl-trimethoxysilane carbon nanotubes (GPS-CNTs) and nanofibers were evaluated for their potential for increasing the interlaminar fracture toughness of an S2-glass fiber/epoxy composite. The fillers were added in the matrix of the fiber reinforced plies, in the resin interlayer between plies, or in both regions. Comparisons were made based on mode I and mode II interlaminar fracture toughness. For composites made with CNTs dispersed in the matrix, fracture toughness was largely unaffected except for a slight increase seen with long GPS-CNTs. However, adding a CNF or CNT modified resin interlayer significantly increased the fracture toughness, with the highest improvement over the baseline material achieved by adding long GPS-CNTs in the interlayer (79% and 91% for mode I and mode II onset toughness, respectively). Important material parameters identified for improving interlaminar fracture toughness are the nanofiller aspect ratio and concentration at the fracture plane. Based on microscopic evaluations of the fracture surfaces, a high density of high aspect ratio nanofillers causes the best entanglement between the filler and glass fibers and effectively obstructs interlaminar crack propagation.  相似文献   

13.
Fracture behavior of polyester composite systems, polyester mortar and glass fiber reinforced polyester mortar, was investigated in mode I fracture using single edge notched beams with varying notch depth. The beams were loaded in four-point bending. Influence of polymer content on the flexural and fracture behavior of polyester composites at room temperature was studied using a uniform Ottawa 20–30 sand. The polymer content was varied between 10 and 18% of the total weight of the composite. The flexural strength of the polyester mortar systems increase with increase in polymer content while the flexural modulus goes through a maximum. The critical stress intensity factor (KIC) for the optimum polyester mortar (14%) was determined by two methods including a method based on crack mouth opening displacement. The KIC for polyester mortar is linearly related to the flexural strength. Polyester mortar (18%) reinforced with 4% glass fibers was also investigated, and crack growth resistance curve (KR) was developed with crack extension (Δa). A model has been proposed to represent the fracture toughness with change in crack length, KR - Δa relationship, of fiber reinforced polyester composite.  相似文献   

14.
The work describes the preparation and physical‐mechanical characterization of unidirectional CFRP panels manufactured by an electron beam curing technique. Delamination fracture toughness in Mode I and II is investigated in order to evaluate the influence of fiber–matrix adhesion strength, matrix toughness and matrix crosslinking density as determined by the radiation curing process. A matrix system comprising a DGEBA epoxy monomer and an initiator of cationic polymerization have been used, with one batch of resin mixed with a PES monomer in order to enhance matrix toughness. Curing was achieved with a pulsed 10 MeV Electron Beam accelerator. Thermally cured composite systems have also been manufactured and tested for comparison. Results from double cantilever beam and end notched flexure delamination tests have been analyzed and correlated with results from short beam shear, dynamic mechanical thermal analysis tests and SEM micrographs of delaminated surfaces. POLYM. COMPOS., 35:1529–1542, 2014. © 2013 Society of Plastics Engineers  相似文献   

15.
The fracture behavior of several short glass fiber reinforced thermoplastics has been studied. The fracture toughness of these materials may be related to local crack propagation mode, which is found to be highly rate dependent. At low test rates the crack growth in the reinforced polymers tend to follow a fiber avoidance mode, creating a greater area of new surfaces, which in conjunction with greater degree of interfacial debonding and fiber pullout friction leads to a higher fracture resistance. An increase in loading rate in general results in a more straight and flat crack path, as well as a lesser extent of fiber debonding and pullout. Therefore the fracture toughness is reduced although the frequency of fiber breakage is increased. The fracture behavior of these short fiber reinforced polymers appears to be dictated by the matrix properties when the loading rate is high.  相似文献   

16.
To better understand mechanisms of fracture under impact loading in cellulose-reinforced polypropylene, dynamic fracture analysis was performed based on linear elastic fracture mechanics. Dynamic critical energy release rates and dynamic critical stress intensity factors were deduced from instrumented Charpy impact test measurements. Dynamic fracture toughness increased with cellulose content. However, the assumption of linear elasticity began to break down for cellulose fiber contents exceeding 40% by weight. Scanning electron microscopy showed considerable fiber curl in the composites, especially at low fiber contents; at high fiber contents, composites developed a three-layer structure.  相似文献   

17.
Siliconized epoxy‐matrix systems have been developed by an interpenetrating mechanism using epoxy resins GY 250 and LY 556 (Ciba‐Geigy) and hydroxyl terminated polydimethylsiloxane with γ‐aminopropyltriethoxysilane as crosslinker in the presence of dibutyltindilaurate catalyst. Aliphatic amine (HY 951, Ciba‐Geigy), aromatic amine (HT 972, Ciba‐Geigy) and polyamidoamine (HY 840, Ciba‐Geigy) are used as curing agents for epoxy resins. The tentative level of 10% siloxane introduction into epoxy resin has been ascertained from experimental studies to obtain reasonable improvements in the impact behavior without compromising other mechanical properties. The impact behavior of E‐glass reinforced composites made from the siliconized epoxy resin is enhanced to 2–4 times over that measured on the composites made from a pure epoxy resin. Composites cured with aromatic amine impart better mechanical properties than those cured with aliphatic amine and polyamidoamine.  相似文献   

18.
19.
Microstructural characterization of nylon 6/short glass fiber (SGF) and nylon 6/polyacrolonitrile based carbon fibers (PAN‐CFs) of 10 to 40 wt% has been performed by positron lifetime technique (PLT). The positron lifetime parameters viz., o‐Ps lifetime (τ3), o‐Ps intensity (I3), and fractional free volume (Fv) of nylon 6/SGF and nylon 6/PAN‐CF composites are correlated with the mechanical properties viz., tensile strength and Young's modulus. The Fv shows negative deviation with the reinforcement of 10 to 40 wt% of PAN‐CF and show positive deviation in nylon 6/SGF from the linear additivity relation. The negative deviation in nylon 6/PAN‐CF composite suggests the induced molecular packing due to the chemical interaction between the polymeric chains of nylon 6 and PAN‐CF. The positive deviation in nylon 6/SGF composite indicates the formation of interface between the polymeric chains of nylon 6 and SGF. The increased crystallinity of nylon 6/SGF and nylon 6/PAN‐CF composites shows the improved mechanical properties of the composites. The hydrodynamic interaction parameter (h), which shows more negative values in nylon 6/SGF than nylon 6/PAN‐CF composites. However, the extent of chemical interaction in nylon 6/SGF is less compare to nylon 6/PAN‐CF composites. This is evident from Fourier transform infrared spectrometry studies. POLYM. ENG. SCI., 58:1428–1437, 2018. © 2017 Society of Plastics Engineers  相似文献   

20.
In order to improve the elevated strength and thermal shock resistance of TiC materials, 20vol% short carbon fiber-reinforced TiC composite (Cf/TiC) was produced by hot pressing. With carbon fiber addition, the strength and fracture toughness of TiC is increased remarkably, and the elastic modulus and thermal expansion coefficient are decreased. The strength value of Cf/TiC composite is 593 MPa at room temperature and 439 MPa at 1400°C, and the fracture toughness value at room temperature is 6.87 MPa m1/2. The thermal stress fracture resistance parameter, R, thermal stress damage resistance parameter, RIV, and thermal stress crack stability parameter, Rst, are all increased. The residual strength decreases significantly when the thermal shock temperature difference, ΔT, is higher than 900°C, and the residual strength is 252 MPa when ΔT is 1400°C. Carbon fiber reinforced-TiC composite exhibits superior resistance to thermal shock damage compared with monolithic TiC. The catastrophic failure induced by severe thermal stresses can be prevented in Cf/TiC composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号